Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fabrication of a simultaneous red–green–blue reflector using single-pitched cholesteric liquid crystals

Abstract

A cholesteric liquid crystal (CLC) is a self-assembled photonic crystal formed by rodlike molecules, including chiral molecules, that arrange themselves in a helical fashion. The CLC has a single photonic bandgap and an associated one-colour reflection band for circularly polarized light with the same handedness as the CLC helix (selective reflection)1. These optical characteristics, particularly the circular polarization of the reflected light, are attractive for applications in reflective colour displays without using a backlight, for use as polarizers or colour filters2,3,4,5,6,7 and for mirrorless lasing8,9,10,11,12. Recently, we showed by numerical simulation that simultaneous multicolour reflection is possible by introducing fibonaccian phase defects13. Here, we design and fabricate a CLC system consisting of thin isotropic films and of polymeric CLC films, and demonstrate experimentally simultaneous red, green and blue reflections (multiple photonic bandgaps) using the single-pitched polymeric CLC films. The experimental reflection spectra are well simulated by calculations. The presented system can extend applications of CLCs to a wide-band region and could give rise to new photonic devices, in which white or multicolour light is manipulated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CLCs and multi-CLC systems with a single pitch.
Figure 2: Simulated reflection spectra of multi-CLC systems at normal incidence of L-CP.
Figure 3: Experimental measurements of multiple reflections and transmissions in multi-CLC systems.

Similar content being viewed by others

References

  1. De Gennes, P. G. & Prost, J. The Physics of Liquid Crystals Ch. 6 (Clarendon, Oxford, 1993).

    Google Scholar 

  2. Broer, D. J., Lub, J. & Mol, G. N. Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient. Nature 378, 467–469 (1995).

    Article  CAS  Google Scholar 

  3. Mitov, M. & Dessaud, N. Going beyond the reflectance limit of cholesteric liquid crystals. Nature Mater. 5, 361–364 (2006).

    Article  CAS  Google Scholar 

  4. Hikmet, R. A. M. & Kemperman, H. Electrically switchable mirrors and optical components made from liquid-crystal gels. Nature 392, 476–479 (1998).

    Article  CAS  Google Scholar 

  5. Lub, J., Witte, P., Doornkamp, C., Vogels, J. P. A. & Wegh, R. T. Stable photopatterned cholesteric layers made by photoisomerization and subsequent photopolymerization for use as color filters in liquid-crystal displays. Adv. Mater. 15, 1420–1425 (2003).

    Article  CAS  Google Scholar 

  6. De Filpo, G., Nicoletta, F. P. & Chidichimo, G. Cholesteric emulsions for colored displays. Adv. Mater. 17, 1150–1152 (2005).

    Article  CAS  Google Scholar 

  7. Yoshioka, T. et al. Reversible-photon-mode full-color display by means of photochemical modulation of a helically cholesteric structure. Adv. Mater. 17, 1226–1229 (2005).

    Article  CAS  Google Scholar 

  8. Kopp, V. I., Fan, B., Vithana, H. K. M. & Genack, A. Z. Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals. Opt. Lett. 23, 1707–1709 (1998).

    CAS  Google Scholar 

  9. Ohta, T. et al. Monodomain film formation and lasing in dye-doped polymer cholesteric liquid crystals. Jpn. J. Appl. Phys. 43, 6142–6144 (2004).

    Article  CAS  Google Scholar 

  10. Jeong, S. M. et al. Defect mode lasing from a double-layered dye-doped polymeric film with a thin rubbed defect layer. Appl. Phys. Lett. 90, 261108 (2007).

    Article  Google Scholar 

  11. Schmidtke, J., Stille, W. & Finkelmann, H. Defect mode emission of a dye doped cholesteric polymer network. Phys. Rev. Lett. 90, 083902 (2003).

    Article  Google Scholar 

  12. Song, M. H. et al. Defect-mode lasing with lowered threshold in a three-layered hetero-cholesteric liquid-crystal structure. Adv. Mater. 18, 193–197 (2006).

    Article  CAS  Google Scholar 

  13. Ha, N. Y., Takanishi, Y., Ishikawa, K. & Takezoe, H. Simultaneous RGB reflections from single-pitched cholesteric liquid crystal films with Fibonaccian defects. Opt. Express 15, 1024–1029 (2007).

    Article  Google Scholar 

  14. Tamaoki, N. Cholesteric liquid crystals for color information technology. Adv. Mater. 13, 1135–1147 (2001).

    Article  CAS  Google Scholar 

  15. Yang, Y.-C. et al. Photonic defect modes of cholesteric liquid crystals. Phys. Rev. E 60, 6852–6854 (1999).

    Article  CAS  Google Scholar 

  16. Kopp, V. I. & Genack, A. Z. Twist defect in chiral photonic structure. Phys. Rev. Lett. 89, 033901 (2002).

    Article  Google Scholar 

  17. Berreman, D. W. Optics in stratified and anisotropic media: 4×4-matrix formation. J. Opt. Soc. Am. 62, 502–510 (1972).

    Article  CAS  Google Scholar 

  18. Gellermann, W., Kohmoto, M., Sutherland, B. & Taylor, P. C. Localization of light waves in Fibonacci dielectric multilayers. Phys. Rev. Lett. 72, 633–636 (1994).

    Article  CAS  Google Scholar 

  19. Negro, L. D. et al. Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue–Morse quasicrystals. Appl. Phys. Lett. 84, 5186–5188 (2004).

    Article  Google Scholar 

  20. Vasconcelos, M. S. & Albuquerque, E. L. Transmission fingerprints in quasiperiodic dielectric multilayers. Phys. Rev. B 59, 11128–11131 (1999).

    Article  CAS  Google Scholar 

  21. Takezoe, H. et al. Experimental studies on reflection spectra in monodomain cholesteric liquid crystal cells: Total reflection, subsidiary oscillation and its beat or swell structure. Jpn. J. Appl. Phys. 22, 1080–1091 (1983).

    Article  CAS  Google Scholar 

  22. Judd, D. B. & Wyszecki, G. Color in Business, Science, and Industry (Wiley, New York, 1963).

    Book  Google Scholar 

  23. Seferis, J. C. in Polymer Handbook (eds Brandrup, J., Immergut, E. H., Grulke, E. A., Abe, A. & Bloch, D. R.) 581 (Wiley, New York, 1999).

    Google Scholar 

  24. Choi, S.-W. et al. Photoinduced circular anisotropy in a photochromic W-shaped-molecule-doped polymeric liquid crystal film. Phys. Rev. E 73, 021702 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Takezoe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ha, N., Ohtsuka, Y., Jeong, S. et al. Fabrication of a simultaneous red–green–blue reflector using single-pitched cholesteric liquid crystals. Nature Mater 7, 43–47 (2008). https://doi.org/10.1038/nmat2045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2045

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing