Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Using polymeric materials to generate an amplified response to molecular recognition events

Abstract

Clinical and field-portable diagnostic devices require the detection of atto- to zeptomoles of biological molecules rapidly, easily and at low cost, with stringent requirements in terms of robustness and reliability. Though a number of creative approaches to this difficult problem have been reported1,2,3,4,5,6,7,8,9, numerous unmet needs remain in the marketplace, particularly in resource-poor settings10,11,12. Using rational materials design, we investigated harnessing the amplification inherent in a radical chain polymerization reaction to detect molecular recognition. Polymerization-based amplification is shown to yield a macroscopically observable polymer, easily visible to the unaided eye, as a result of as few as 1,000 recognition events (10 zeptomoles). Design and synthesis of a dual-functional macromolecule that is capable both of selective recognition and of initiating a polymerization reaction was central to obtaining high sensitivity and eliminating the need for any detection equipment. Herein, we detail the design criteria that were used and compare our findings with those obtained using enzymatic amplification. Most excitingly, this new approach is general in that it is readily adaptable to facile detection at very low levels of specific biological interactions of any kind.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Conceptual depiction of detection using polymerization-based signal amplification.
Figure 2: Design and synthesis of molecules to enable polymerization following a binding event.
Figure 3: Polymerization for signal amplification following a binding event.
Figure 4: Quantification of the number of binding events necessary for a macroscopic, visible response using a 3×3 dilution array of biotinylated oligonucleotides.

References

  1. Elghanian, R., Storhoff, J. J., Mucic, R. C., Letsinger, R. L. & Mirkin, C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078–1081 (1997).

    CAS  Article  Google Scholar 

  2. Nam, J.-M., Thaxton, C. S. & Mirkin, C. A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301, 1884–1886 (2003).

    CAS  Article  Google Scholar 

  3. Jenison, R., Yang, S., Haeberli, A. & Polisky, B. Interference-based detection of nucleic acid targets on optically coated silicon. Nature Biotechnol. 19, 62–65 (2001).

    CAS  Article  Google Scholar 

  4. Sia, S. K., Linder, V., Parviz, B. A., Siegel, A. & Whitesides, G. M. An integrated approach to a portable and low-cost immunoassay for resource-poor settings. Angew. Chem. Int. Edn 43, 498–502 (2004).

    CAS  Article  Google Scholar 

  5. Lee, H. J., Li, Y., Wark, A. W. & Corn, R. M. Enzymatically amplified SPR imaging detection of DNA by exonuclease III digestion of DNA microarrays. Anal. Chem. 77, 5096–5100 (2005).

    CAS  Article  Google Scholar 

  6. Cooper, M. A. Label-free screening of bio-molecular interactions. Anal. Bioanal. Chem. 377, 834–842 (2003).

    CAS  Article  Google Scholar 

  7. Fan, C., Plaxco, K. W. & Heeger, A. J. Biosensors based on binding-modulated donor–acceptor distances. Trends Biotechnol. 23, 186–192 (2005).

    CAS  Article  Google Scholar 

  8. Cunin, F. et al. Biomolecular screening with encoded porous-silicon photonic crystals. Nature Mater. 1, 39–41 (2002).

    CAS  Article  Google Scholar 

  9. Asher, S. A. et al. Photonic crystal carbohydrate sensors: low ionic strength sugar sensing. J. Am. Chem. Soc. 125, 3322–3329 (2003).

    CAS  Article  Google Scholar 

  10. Mabey, D., Peeling, R. W., Ustianowski, A. & Perkins, M. D. Diagnostics for the developing world. Nature Rev. Microbiol. 2, 231–240 (2004).

    CAS  Article  Google Scholar 

  11. Bell, J. Predicting disease using genomics. Nature 429, 453–456 (2004).

    CAS  Article  Google Scholar 

  12. Darr, A. S. et al. Top ten biotechnologies for improving health in developing countries. Nature Genet. 32, 229–232 (2002).

    Article  Google Scholar 

  13. Kloosterboer, J. G. Network formation by chain crosslinking photopolymerization and its applications in electronics. Adv. Polym. Sci. 84, 1–61 (1988).

    CAS  Article  Google Scholar 

  14. Wilcheck, M., Bayer, E. A. & Livnah, O. Essentials of biorecognition: The (strept)avidin–biotin system as a model for protein–protein and protein–ligand interaction. Immunol. Lett. 103, 27–32 (2006).

    Article  Google Scholar 

  15. Jenison, R., La, H., Haeberli, A., Ostroff, R. & Polisky, B. Silicon-based biosensors for rapid detection of protein or nucleic acid targets. Clin. Chem. 47, 1894–1900 (2001).

    CAS  Google Scholar 

  16. Jenison, R., Yang, S., Haeberli, A. & Polisky, B. Interference-based detection of nucleic acid targets on optically coated silicon. Nature Biotechnol. 19, 62–65 (2001).

    CAS  Article  Google Scholar 

  17. Zhong, X. et al. Single-nucleotide polymorphism genotyping on optical thin-film biosensor chips. Proc. Natl Acad. Sci. USA 100, 11559–11564 (2003).

    CAS  Article  Google Scholar 

  18. Mosbach, K. & Ramstrom, O. The emerging technique of molecular imprinting and its future impact on biotechnology. Nature Biotechnol. 14, 163–170 (1996).

    CAS  Article  Google Scholar 

  19. Peppas, N. A., Hilt, J. Z., Khademhosseini, A. & Langer, R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18, 1345–1360 (2006).

    CAS  Article  Google Scholar 

  20. O’Connor, N. A., Paisner, D. A., Huryn, D. & Shea, K. J. Screening of 5-HT1A receptor antagonists using molecularly imprinted polymers. J. Am. Chem. Soc. 129, 1680–1689 (2007).

    Article  Google Scholar 

  21. Hawker, C. J., Bosman, A. W. & Harth, E. New polymer synthesis by nitroxide mediated living polymerizations. Chem. Rev. 101, 3661–3688 (2001).

    CAS  Article  Google Scholar 

  22. Coessens, V., Pintauer, T. & Matyjaszewski, K. Functional polymers by atom transfer radical polymerization. Prog. Polym. Sci. 26, 337–377 (2001).

    CAS  Article  Google Scholar 

  23. Guacher, G. et al. Block copolymer micelles: Preparation, characterization, and application in drug delivery. J. Control. Rel. 109, 169–188 (2005).

    Article  Google Scholar 

  24. Staros, J. V., Wright, R. W. & Swingle, D. M. Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions. Anal. Biochem. 156, 220–222 (1986).

    CAS  Article  Google Scholar 

  25. Green, N. M. A spectrophotometric assay for avidin and biotin based on binding of dyes by avidin. Biochem. J. 94, 23c–24c (1965).

    CAS  Article  Google Scholar 

  26. Jayasena, S. D. Aptamers: An emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 45, 1628–1650 (1999).

    CAS  Google Scholar 

  27. Binz, H. K., Amstutz, P. & Pluckthun, A. Engineering novel binding proteins from nonimmunoglobulin domains. Nature Biotechnol. 23, 1257–1268 (2005).

    CAS  Article  Google Scholar 

  28. Brandt, O. & Hoheisel, J. D. Peptide nucleic acids on microarray and other biosensors. Trends Biotechnol. 22, 617–622 (2004).

    CAS  Article  Google Scholar 

  29. Liu, H. et al. A four-base paired genetic helix with expanded size. Science 302, 868–871 (2003).

    CAS  Article  Google Scholar 

  30. Boder, E. T., Midelfort, K. S. & Wittrup, K. D. Directed evolution of antibody fragments with monovalent femtomolar antigen binding affinity. Proc. Natl Acad. Sci. 97, 10701–10705 (2000).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

H.D.S. acknowledges support from the National Human Genome Research Institute (NSRA F32-HG003100) and the Burroughs Wellcome Fund (Career Award at the Scientific Interface). R.R.H., L.M.J., K.L.R. and C.N.B. acknowledge support from NSF SGER 0442047 and NIH R41 AI060057. Thin-film biosensors, buffers and enzymatic detection reagents were generously provided by Inverness Medical-Biostar.

Author information

Authors and Affiliations

Authors

Contributions

K.L.R., J.W.B. and C.N.B. came up with the concept, C.N.B., H.D.S. and R.J. designed the experiments, H.D.S., R.R.H. and L.M.J. performed the experiments and H.D.S., C.N.B. and R.J. wrote the paper.

Corresponding author

Correspondence to Christopher N. Bowman.

Supplementary information

Supplementary Information

Supplementary information and figures (PDF 114 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sikes, H., Hansen, R., Johnson, L. et al. Using polymeric materials to generate an amplified response to molecular recognition events. Nature Mater 7, 52–56 (2008). https://doi.org/10.1038/nmat2042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2042

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing