Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Enhanced mobility of confined polymers

Abstract

Non-classical behaviour, brought about by a confinement that imposes spatial constraints on molecules, is opening avenues to novel applications. For example, carbon nanotubes, which show rapid and selective transport of small molecules across the nanotubes, have significant potential as biological or chemical separation materials for organic solvents or gaseous molecules1,2,3,4,5. With polymers, when the dimensions of a confining volume are much less than the radius of gyration, a quantitative understanding of perturbations to chain dynamics due to geometric constraints remains a challenge6,7,8,9,10 and, with the development of nanofabrication processes, the dynamics of confined polymers have significant technological implications11,12,13,14,15,16,17. Here, we describe a weak molecular-weight-dependent mobility of polymers confined within nanoscopic cylindrical pores having diameters smaller than the dimension of the chains in the bulk. On the basis of the chain configuration along the pore axis, the measured mobility of polymers in the confined geometry is much higher than the mobility of the unconfined chain. With the emergence of nanofabrication processes based on polymer flow, the unexpected enhancement in flow and reduction in intermolecular entanglements are of significant importance in the design and execution of processing strategies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measurement of capillary rise of polymeric liquid.
Figure 2: Differential scanning calorimetry of polystyrene in the cylindrical nanoporous alumina.
Figure 3: Measurement of overall conformation along nanopore axes via SANS experiment.
Figure 4: Scattered intensity of polystyrene in bulk and in nanopores from two-dimensional SANS pattern after calibration and the chain dimensions of different molecular-weight polystyrene along the pore axes in different pore diameters.

Similar content being viewed by others

References

  1. Holt, J.K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    Article  CAS  Google Scholar 

  2. Majumder, M., Chopra, N., Andrews, R. & Hinds, B. J. Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes. Nature 438, 44 (2005).

    Article  CAS  Google Scholar 

  3. Hummer, G., Rasaiah, J. C. & Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001).

    Article  CAS  Google Scholar 

  4. Kaira, A., Garde, S. & Hummer, G. Osmotic water transport through carbon nanotube membranes. Proc. Natl Acad. Sci. USA 100, 10175–10180 (2003).

    Article  Google Scholar 

  5. Skoulidas, A. I., Ackerman, D. M., Johnson, J. K. & Sholl, D. S. Rapid transport of gases in carbon nanotubes. Phys. Rev. Lett. 89, 185901 (2002).

    Article  Google Scholar 

  6. Frank, B., Gast, A. P., Russell, T. P., Brown, H. R. & Hawker, C. J. Polymer mobility in thin films. Macromolecules 29, 6531–6534 (1996).

    Article  CAS  Google Scholar 

  7. Ellison, C. J. & Torkelson, J. M. The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nature Mater. 2, 695–700 (2005).

    Article  Google Scholar 

  8. O’Connell, P. A. & McKenna, G. B. Rheological measurements of the thermoviscoelastic response of ultrathin polymer films. Science 307, 1760–1763 (2005).

    Article  Google Scholar 

  9. Zheng, X. et al. Reptation dynamics of a polymer melt near an attractive solid interface. Phys. Rev. Lett. 74, 407–410 (1995).

    Article  CAS  Google Scholar 

  10. Jones, R. L., Kumar, S. K., Ho, D. L., Briber, R. M. & Russell, T. P. Chain conformation in ultrathin polymer films. Nature 400, 146–149 (1999).

    Article  CAS  Google Scholar 

  11. Brown, H. R. Chain pullout and mobility effects in friction and lubrication. Science 263, 1411–1413 (1994).

    Article  CAS  Google Scholar 

  12. Granick, S. et al. Macromolecules at surfaces: Research challenges and opportunities from tribology to biology. J. Polym. Sci. B 41, 2755–2793 (2003).

    Article  CAS  Google Scholar 

  13. Suh, K. Y. & Lee, H. H. Capillary force lithography. Adv. Mater. 13, 1386–1389 (2001).

    Article  CAS  Google Scholar 

  14. Creton, C., Brown, H. R. & Shull, K. R. Molecular weight effects in chain pullout. Macromolecules 27, 3174–3183 (1994).

    Article  CAS  Google Scholar 

  15. Smith, G. D., Yoon, D. Y. & Jaffe, R. L. Long-time molecular motions and local chain dynamics in n-C44H90 melts by molecular dynamics simulations. Macromolecules 28, 5897–5905 (1995).

    Article  CAS  Google Scholar 

  16. Stafford, C. M. et al. A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nature Mater. 3, 545–550 (2004).

    Article  CAS  Google Scholar 

  17. Shin, K. et al. Curving and frustrating flatland. Science 306, 76 (2004).

    Article  CAS  Google Scholar 

  18. de Gennes, P. G. Scaling Concepts in Polymer Physics (Cornell Univ. Press, Ithaca, 1979).

    Google Scholar 

  19. Roe, R. Methods of X-Ray and Neutron Scattering in Polymer Science (Oxford Univ. Press, New York, 2000).

    Google Scholar 

  20. Balta-Calleja, F. J. & Vonk, C. G. X-Ray Scattering of Synthetic Polymers (Elsevier, Amsterdam, 1989).

    Google Scholar 

  21. Zosel, A. Der Einfluß von Molekulargewicht und Molekulargewichtsverteilung auf die viskoelastischen Eigenschaften von Polystyrolschmelzen. Rheol. Acta 10, 215–224 (1971).

    Article  CAS  Google Scholar 

  22. Washburn, E. W. The dynamics of capillary flow. Phys. Rev. 17, 273–283 (1921).

    Article  Google Scholar 

  23. Lodge, T. P. Reconciliation of the molecular weight dependence of diffusion and viscosity in entangled polymers. Phys. Rev. Lett. 83, 3218–3221 (1999).

    Article  CAS  Google Scholar 

  24. Doi, M. & Edwards, S. F. The Theory of Polymer Dynamics (Oxford Univ. Press, New York, 1986).

    Google Scholar 

  25. Tao, H., Lodge, T. P. & von Meerwall, E. D. Diffusivity and viscosity of concentrated hydrogenated polybutadiene solutions. Macromolecules 33, 1747–1758 (2000).

    Article  CAS  Google Scholar 

  26. Brandrup, J. & Immergut, E. H. Polymer Handbook 3rd edn (Wiley Interscience, New York, 1989).

    Google Scholar 

  27. Keddie, J. L., Jones, R. A. L. & Cory, R. A. Size-dependent depression of the glass transition temperature in polymer films. Europhys. Lett. 27, 59–64 (1994).

    Article  CAS  Google Scholar 

  28. Keddie, J. L., Jones, R. A. L. & Cory, R. A. Interface and surface effects on the glass transition temperature in thin polymer films. Faraday Discuss. 98, 219–230 (1994).

    Article  CAS  Google Scholar 

  29. DeMaggio, G. B. et al. Interface and surface effects on the glass transition in thin polystyrene films. Phys. Rev. Lett. 78, 1524–1527 (1991).

    Article  Google Scholar 

  30. Efremov, M. Y., Olson, E. A., Zhang, M., Zhang, Z. & Allen, L. H. Glass transition in ultrathin polymer films: Calorimetric study. Phys. Rev. Lett. 91, 085703 (2003).

    Article  Google Scholar 

  31. Park, J. & McKenna, G. B. Size and confinement effects on the glass transition behavior of polystyrene/o-terphenyl polymer solutions. Phys. Rev. B 61, 6667–6676 (2000).

    Article  CAS  Google Scholar 

  32. Pissis, P., Kyritsis, A., Barut, G., Pelster, R. & Nimtz, G. Glass transition in 2- and 3-dimensionally confined liquids. J. Non-Cryst. Solids 235–237, 444–449 (1998).

    Article  Google Scholar 

  33. Bansal, A. et al. Quantitative equivalence between polymer nanocomposites and thin polymer films. Nature Mater. 4, 693–698 (2005).

    Article  CAS  Google Scholar 

  34. Kumar, S. K., Vacatello, M. & Yoon, D. Y. Off-lattice Monte Carlo simulations of polymer melts confined between two plates. J. Chem. Phys. 89, 5206–5216 (1988).

    Article  CAS  Google Scholar 

  35. Rubinstein, M. & Colby, R. H. Polymer Physics (Oxford Univ. Press, New York, 2003).

    Google Scholar 

  36. Huber, P., Grüner, S., Schäfer, C., Knorr, K. & Kityk, A. V. Rheology of liquids in nanopores: A study on the capillary rise of water, n-Hexadecane and n-Tetracosane in mesoporous silica. Eur. Phys. J. Special Topics 141, 101–105 (2007).

    Article  Google Scholar 

  37. Rastogi, S. et al. Heterogeneity in polymer melts from melting of polymer crystals. Nature Mater. 4, 635–641 (2005).

    Article  CAS  Google Scholar 

  38. Woo, E., Huh, J., Jeong, Y. G. & Shin, K. From homogeneous to heterogeneous nucleation of chain molecules under nanoscopic cylindrical confinement. Phys. Rev. Lett. 98, 136103 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Research Foundation (MOEHRD, Basic Research Promotion Fund for new faculties, KRF-2006-331-D00160) and the Korea Science and Engineering Foundation (Basic Research Program, R01-2006-000-10749-0). K.S. and S.M. are indebted to the experimental support staff of the 4C2 beamline at the Pohang Light Source. T.P.R., P.D. and J.-T.C. were supported by the Department of Energy Basic Energy Sciences (DEFG0296ER45612) and the National Science Foundation-supported Material Research Science and Engineering Center at the University of Massachusetts, Amherst (DMR-0213695). S.O. acknowledges the support of Petroleum Research Grant PRF# 43923 -AC 7 and the hospitality of ICS Strasbourg. Use of IPNS was supported by the Department of Energy Basic Energy Sciences (DE-AC02-06CH11357).

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in discussions of the research and wrote the manuscript. K.S. and S.M. measured capillary rise. S.O. and J.H. developed theory. Y.H. observed glass transition. K.S., J.-T.C., S.M., P.D., P.T. and T.P.R. carried out the overall conformation measurements.

Corresponding authors

Correspondence to Kyusoon Shin or Thomas P. Russell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, K., Obukhov, S., Chen, JT. et al. Enhanced mobility of confined polymers. Nature Mater 6, 961–965 (2007). https://doi.org/10.1038/nmat2031

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2031

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing