Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The emergence of spin electronics in data storage

Abstract

Electrons have a charge and a spin, but until recently these were considered separately. In classical electronics, charges are moved by electric fields to transmit information and are stored in a capacitor to save it. In magnetic recording, magnetic fields have been used to read or write the information stored on the magnetization, which 'measures' the local orientation of spins in ferromagnets. The picture started to change in 1988, when the discovery of giant magnetoresistance opened the way to efficient control of charge transport through magnetization. The recent expansion of hard-disk recording owes much to this development. We are starting to see a new paradigm where magnetization dynamics and charge currents act on each other in nanostructured artificial materials. Ultimately, 'spin currents' could even replace charge currents for the transfer and treatment of information, allowing faster, low-energy operations: spin electronics is on its way.

This is a preview of subscription content, access via your institution

Access options

Figure 1: Magnetoresistive head for hard-disk recording.
Figure 2: The spin valve.
Figure 3: Spin accumulation.
Figure 4: The magnetic tunnel junction.
Figure 5: Magnetic random access memory.

© 2006 IEEE

Figure 6: Spin-transfer switching.
Figure 7: The spin-RAM.

© 2005 IEEE/© 2007 IEEE

Figure 8: Domain wall storage devices.

Similar content being viewed by others

References

  1. Moser, A. et al. Magnetic recording: advancing into the future. J. Phys. D 35, R157–R167 (2002).

    CAS  Google Scholar 

  2. Mott, N. Electrons in transition metals. Adv. Phys. 13, 325–422 (1964).

    CAS  Google Scholar 

  3. Fert, A. & Campbell, I. A. Two-current conduction in nickel. Phys. Rev. Lett. 21, 1190–1192 (1968).

    CAS  Google Scholar 

  4. Fert, A. & Campbell, I. Electrical resistivity of ferromagnetic nickel and iron based alloys. J. Phys. F 6, 849–871 (1976).

    CAS  Google Scholar 

  5. Fert, A., Duvail, J. & Valet, T. Spin relaxation effects in the perpendicular magnetoresistance of magnetic multilayers. Phys. Rev. B 52, 6513–6521 (1995).

    CAS  Google Scholar 

  6. Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

    CAS  Google Scholar 

  7. Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).

    CAS  Google Scholar 

  8. Levy, P. M. & Mertig, I. in Spin Dependent Transport in Magnetic Nanostructures (eds Maekawa, S. & Shinjo, T.) Ch. 2, 47–112 (CRC, Boca Raton, 2002).

    Google Scholar 

  9. Fert, A., Barthélémy, A. & Petroff, F. in Nanomagnetism: Ultrathin Films, Multilayers and Nanostructures (eds Mills, D. M. & Bland, J. A. C.) Ch. 6 (Elsevier, Amsterdam, 2006).

    Google Scholar 

  10. Grünberg, P. Magnetic field sensor with ferromagnetic thin layers having magnetically antiparallel polarized components. US patent 4,949,039 (1990).

  11. Dieny, B. et al. Magnetoresistive sensor based on the spin valve effect. US patent 5,206,590 (1993).

  12. Dieny, B. et al. Giant magnetoresistance in soft ferromagnetic multilayers. Phys. Rev. B 43, 1297–1300 (1991).

    CAS  Google Scholar 

  13. Daughton, J. M. Magnetic tunneling applied to memory. J. Appl. Phys. 81, 3758–3763 (1997).

    CAS  Google Scholar 

  14. Valet, T. & Fert, A. Theory of the perpendicular magnetoresistance in magnetic multilayers. Phys. Rev. B 48, 7099–7113 (1993).

    CAS  Google Scholar 

  15. Schmidt, G., Ferrand, D., Molenkamp, L. W., Filip, A. T. & van Wees, B. J. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62, R4790–R4793 (2000).

    CAS  Google Scholar 

  16. Fert, A. & Jaffrès, H. Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Phys. Rev. B 64, 184420 (2001).

    Google Scholar 

  17. Jedema, F. J., Filip, A. T. & van Wees, B. J. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 410, 345–348 (2001).

    CAS  Google Scholar 

  18. Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

    CAS  Google Scholar 

  19. Gijs, M. A. M., Lenczowski, S. K. J. & Giesbers, J. B. Perpendicular giant magnetoresistance of microstructured Fe/Cr magnetic multilayers from 4.2 to 300 K. Phys. Rev. Lett. 70, 3343–3346 (1993).

    CAS  Google Scholar 

  20. Bass, J. & Pratt, W. P. Current-perpendicular (CPP) magnetoresistance in magnetic metallic multilayers. J. Magn. Magn. Mater. 200, 274–289 (1999).

    CAS  Google Scholar 

  21. Fert, A. & Piraux, L. Magnetic nanowires. J. Magn. Magn. Mater. 200, 338–358 (1999).

    CAS  Google Scholar 

  22. Takagishi, M. et al. The applicability of CPP-GMR heads for magnetic recording. IEEE Trans. Magn. 38, 2277–2282 (2002).

    CAS  Google Scholar 

  23. Childress, J. et al. Fabrication and recording study of all-metal dual-spin-valve CPP read heads. IEEE Trans. Magn. 42, 2444–2446 (2006).

    CAS  Google Scholar 

  24. Jullière, M. Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975).

    Google Scholar 

  25. Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).

    CAS  Google Scholar 

  26. Miyazaki, T. & Tezuka, N. Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 139, L231–L234 (1995).

    CAS  Google Scholar 

  27. Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nature Mater. 3, 862–867 (2004).

    CAS  Google Scholar 

  28. Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nature Mater. 3, 868–871 (2004).

    CAS  Google Scholar 

  29. Butler, W. H., Zhang, X., Schulthess, T. C. & MacLaren, J. M. Spin-dependent tunneling conductance of Fe/MgO/Fe sandwiches. Phys. Rev. B 63, 054416 (2001).

    Google Scholar 

  30. Mathon, J. & Umerski, A. Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction. Phys. Rev. B 63, 220403 (2001).

    Google Scholar 

  31. Lee, Y. M., Hayakawa, J., Ikeda, S., Matsukura, F. & Ohno, H. Effect of electrode composition on the tunnel magnetoresistance of pseudo-spin-valve magnetic tunnel junction with a MgO tunnel barrier. Appl. Phys. Lett. 90, 212507 (2007).

    Google Scholar 

  32. Mao, S. et al. Commercial TMR heads for hard disk drives: characterization and extendibility at 300 gbit/in2. IEEE Trans. Magn. 42, 97–102 (2006).

    Google Scholar 

  33. Engel, B. et al. A 4-Mb toggle MRAM based on a novel bit and switching method. IEEE Trans. Magn. 41, 132–136 (2005).

    Google Scholar 

  34. DeBrosse, J. et al. A high-speed 128-kb MRAM core for future universal memory applications. IEEE J. Solid-State Circ. 39, 678–683 (2004).

    Google Scholar 

  35. Brown, W. F. Thermal fluctuations of a single-domain particle. Phys. Rev. 130, 1677–1686 (1963).

    Google Scholar 

  36. Néel, L. Anisotropie superficielle et surstructures d'orientation magnétique. J. Phys. Rad. 15, 225–239 (1954).

    Google Scholar 

  37. Gradmann, U. & Müller, J. Flat ferromagnetic, epitaxial 48Ni/52Fe(111) films of few atomic layers. Phys. Status Solidi B 27, 313–324 (1968).

    CAS  Google Scholar 

  38. Carcia, P. F., Meinhaldt, A. D. & Suna, A. Perpendicular magnetic anisotropy in Pd/Co thin film layered structures. Appl. Phys. Lett. 47, 178–180 (1985).

    CAS  Google Scholar 

  39. Chappert, C., Renard, D., Beauvillain, P. & Renard, J. Ferromagnetism of very thin films of nickel and cobalt. J. Magn. Magn. Mater. 54–57, 795–796 (1986).

    Google Scholar 

  40. Daalderop, G. H. O., Kelly, P. J. & den Broeder, F. J. A. Prediction and confirmation of perpendicular magnetic anisotropy in Co/Ni multilayers. Phys. Rev. Lett. 68, 682–685 (1992).

    CAS  Google Scholar 

  41. Meiklejohn, W. H. & Bean, C. P. New magnetic anisotropy. Phys. Rev. 102, 1413–1414 (1956).

    Google Scholar 

  42. Nogues, J. et al. Exchange bias in nanostructures. Phys. Rep. 422, 65–117 (2005).

    Google Scholar 

  43. Prejbeanu, I. et al. Thermally assisted switching in exchange-biased storage layer magnetic tunnel junctions. IEEE Trans. Magn. 40, 2625–2627 (2004).

    Google Scholar 

  44. Skumryev, V. et al. Beating the superparamagnetic limit with exchange bias. Nature 423, 850–853 (2003).

    CAS  Google Scholar 

  45. Grünberg, P., Schreiber, R., Pang, Y., Brodsky, M. B. & Sowers, H. Layered magnetic structures: evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. Phys. Rev. Lett. 57, 2442–2445 (1986).

    Google Scholar 

  46. Majkrzak, C. F. et al. Observation of a magnetic antiphase domain structure with long-range order in a synthetic Gd-Y superlattice. Phys. Rev. Lett. 56, 2700–2703 (1986).

    CAS  Google Scholar 

  47. Parkin, S. S. P., More, N. & Roche, K. P. Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. Phys. Rev. Lett. 64, 2304–2307 (1990).

    CAS  Google Scholar 

  48. Bruno, P. & Chappert, C. Oscillatory coupling between ferromagnetic layers separated by a nonmagnetic metal spacer. Phys. Rev. Lett. 67, 1602–1605 (1991).

    CAS  Google Scholar 

  49. Bruno, P. Theory of interlayer magnetic coupling. Phys. Rev. B 52, 411–439 (1995).

    CAS  Google Scholar 

  50. Margulies, D. T., Berger, A., Moser, A., Schabes, M. E. & Fullerton, E. E. The energy barriers in antiferromagnetically coupled media. Appl. Phys. Lett. 82, 3701–3703 (2003).

    CAS  Google Scholar 

  51. Savchenko, L., Engel, B. N., Rizzo, N. D., Deherrera, M. F. & Janesky J. A. Method of writing to scalable magnetoresistance random access memory element. US patent 6,545,906B1 (2003).

  52. Weller, D. et al. High Ku materials approach to 100 Gbits/in2. IEEE Trans. Magn. 36, 10–15 (2000).

    CAS  Google Scholar 

  53. Durlam, M. et al. Low power 1 Mbit MRAM based on 1T1MTJ bit cell integrated with copper interconnects. Symp. VLSI Techn. Dig., 158–161 (2002).

  54. Worledge, D. C. Spin flop switching for magnetic random access memory. Appl. Phys. Lett. 84, 4559–4561 (2004).

    CAS  Google Scholar 

  55. Daughton, J. M. & Pohm, A. V. Design of Curie point written magnetoresistance random access memory cells. J. Appl. Phys. 93, 7304–7306 (2003).

    CAS  Google Scholar 

  56. Rizzo, N. D. & Engel, B. N. MRAM write apparatus and method. US patent 6,351,409 (2002).

    Google Scholar 

  57. Thirion, C., Wernsdorfer, W. & Mailly, D. Switching of magnetization by nonlinear resonance studied in single nanoparticles. Nature Mater. 2, 524–527 (2003).

    CAS  Google Scholar 

  58. Nembach, H. T. et al. Microwave assisted switching in a Ni81Fe19 ellipsoid. Appl. Phys. Lett. 90, 062503 (2007).

    Google Scholar 

  59. Slonczewski, J. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    CAS  Google Scholar 

  60. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    CAS  Google Scholar 

  61. Albert, F. J., Katine, J. A., Buhrman, R. A. & Ralph, D. C. Spin-polarized current switching of a Co thin film nanomagnet. Appl. Phys. Lett. 77, 3809–3811 (2000).

    CAS  Google Scholar 

  62. Berger, L. Prediction of a domain-drag effect in uniaxial, non-compensated, ferromagnetic metals. J. Phys. Chem. Solids 35, 947–956 (1974).

    CAS  Google Scholar 

  63. Freitas, P. P. & Berger, L. Observation of s–d exchange force between domain walls and electric current in very thin Permalloy films. J. Appl. Phys. 57, 1266–1269 (1985).

    CAS  Google Scholar 

  64. Slonczewski, J. C. Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. Phys. Rev. B 39, 6995–7002 (1989).

    CAS  Google Scholar 

  65. Stiles, M. & Miltat, J. in Spin Dynamics in Confined Magnetic Structures III (eds Hillebrands, B. & Thiaville, A.) (Springer, Berlin, 2006)

    Google Scholar 

  66. Sun, J. Z. Spin–current interaction with a monodomain magnetic body: a model study. Phys. Rev. B 62, 570–578 (2000).

    CAS  Google Scholar 

  67. Ralph, D. & Buhrman, R., in Concepts in Spintronics (ed. Maekawa, S.) (Oxford Univ. Press, 2006)

    Google Scholar 

  68. Huai, Y., Albert, F., Nguyen, P., Pakala, M. & Valet, T. Observation of spin-transfer switching in deep submicron-sized and low-resistance magnetic tunnel junctions. Appl. Phys. Lett. 84, 3118–3120 (2004).

    CAS  Google Scholar 

  69. Hayakawa, J. et al. Current-induced magnetization switching in MgO barrier based magnetic tunnel junctions with CoFeB/Ru/CoFeB synthetic ferrimagnetic free layer. Jpn. J. Appl. Phys. 45, L1057–L1060 (2006).

    CAS  Google Scholar 

  70. Hosomi, M. et al. Novel nonvolatile memory with spin torque transfer magnetization switching: spin-ram. IEDM Tech. Dig. 459–462 (2005).

  71. Kawahara, T. et al. 2Mb spin-transfer torque RAM (SPRAM) with bit-by-bit bidirectional current write and parallelizing-direction current read. ISSCC Dig. Tech. Papers, 480–481 (2007).

  72. Jung, S. et al. Three dimensionally stacked NAND Flash memory technology using stacking single crystal Si layers on ILD and TANOS structure for beyond 30 nm node. IEDM Tech. Dig., 1–4 (2006).

  73. Ito, K., Devolder, T., Chappert, C., Carey, M. J. & Katine, J. A. Micromagnetic simulation of spin transfer torque switching combined with precessional motion from a hard axis magnetic field. Appl. Phys. Lett. 89, 252509 (2006).

    Google Scholar 

  74. Devolder, T., Chappert, C. & Ito, K. Sub-ns spin-transfer switching: compared benefits of free layer biasing and pinned layer biasing. Phys. Rev. B 75, 224430 (2007).

    Google Scholar 

  75. Sakimura, N. et al. A 512 kb cross-point cell MRAM. ISSCC Dig. Tech. Papers, 278–279 (2003).

  76. Tanizaki, H. et al. A high-density and high-speed 1T-4MTJ MRAM with voltage offset self-reference sensing scheme. Asian Solid-State Circuits Conf. Dig. Tech. Papers, 303–306 (2006).

  77. Leuschner, R. et al. Thermal select MRAM with a 2-bit cell capability for beyond 65 nm technology node. IEDM Tech. Dig., 1–4 (2006).

  78. Bowen, M. et al. Nearly total spin polarization in La2/3Sr1/3MnO3 from tunnelling experiments. Appl. Phys. Lett. 82, 233–235 (2003).

    CAS  Google Scholar 

  79. Ishikawa, T. et al. Spin-dependent tunneling characteristics of fully epitaxial magnetic tunneling junctions with a full-Heusler alloy Co2MnSi thin film and a MgO tunnel barrier. Appl. Phys. Lett. 89, 192505 (2006).

    Google Scholar 

  80. Marukame, T., Ishikawa, T., Matsuda, K., Uemura, T. & Yamamoto, M. High tunnel magnetoresistance in fully epitaxial magnetic tunnel junctions with a full-Heusler alloy Co2Cr0.6Fe0.4Al thin film. Appl. Phys. Lett. 88, 262503 (2006).

    Google Scholar 

  81. Chiba, D., Sato, Y., Kita, T., Matsukura, F. & Ohno, H. Current-driven magnetization reversal in a ferromagnetic semiconductor (Ga,Mn)As/GaAs/(Ga,Mn)As tunnel junction. Phys. Rev. Lett. 93, 216602 (2004).

    CAS  Google Scholar 

  82. Elsen, M. Spin transfer experiments on (Ga,Mn)As/(In,Ga)As/(Ga,Mn)As tunnel junctions. Phys. Rev. B 73, 035303 (2006).

    Google Scholar 

  83. Gould, C. Tunneling anisotropic magnetoresistance: a spin-valve-like tunnel magnetoresistance using a single magnetic layer. Phys. Rev. Lett. 93, 117203 (2004).

    CAS  Google Scholar 

  84. Gould, C., Schmidt, G. & Molenkamp, L. W. Tunneling anisotropic magnetoresistance-based devices. IEEE Trans. Electron Dev. 54, 977–983 (2007).

    CAS  Google Scholar 

  85. Enaya, H., Semenov, Y. G., Kim, K. W. & Zavada, J. M. Electrical manipulation of nonvolatile spin cell based on diluted magnetic semiconductor quantum dots. IEEE Trans. Electron Dev. 54, 1032–1039 (2007).

    Google Scholar 

  86. LeClair, P. et al. Large magnetoresistance using hybrid spin filter devices. Appl. Phys. Lett. 80, 625–627 (2002).

    CAS  Google Scholar 

  87. Monsma, D. J., Lodder, J. C., Popma, T. J. A. & Dieny, B. Perpendicular hot electron spin-valve effect in a new magnetic field sensor: the spin-valve transistor. Phys. Rev. Lett. 74, 5260–5263 (1995).

    CAS  Google Scholar 

  88. van Dijken, S., Jiang, X. & Parkin, S. S. P. Room temperature operation of a high output current magnetic tunnel transistor. Appl. Phys. Lett. 80, 3364–3366 (2002).

    CAS  Google Scholar 

  89. Hehn, M., Montaigne, F. & Schuhl, A. Hot-electron three-terminal devices based on magnetic tunnel junction stacks. Phys. Rev. B 66, 144411 (2002).

    Google Scholar 

  90. Hubert, A. & Schäfer, R. Magnetic Domains (Springer, Berlin, 1998).

    Google Scholar 

  91. Allwood, D. A. et al. Submicrometer ferromagnetic NOT gate and shift register. Science 296, 2003–2006 (2002).

    CAS  Google Scholar 

  92. Allwood, D. A. et al. Magnetic domain-wall logic. Science 309, 1688–1692 (2005).

    CAS  Google Scholar 

  93. Cowburn, R. P. & Allwood, D. A. Multiple layer magnetic logic memory device. UK patent GB2,430,318A (2007).

  94. Parkin, S. S. P. Shiftable magnetic shift register and method using the same. US patent 6,834,005B1 (2004).

  95. Cros, V., Grollier, J., Munoz Sanchez, M., Fert, A. & Nguyen Van Dau, F. Spin electronics device. Patent WO 2006 /064022 (2006).

  96. Tatara, G. & Kohno, H. Theory of current-driven domain wall motion: spin transfer versus momentum transfer. Phys. Rev. Lett. 92, 086601 (2004).

    Google Scholar 

  97. Li, Z. & Zhang, S. Domain-wall dynamics and spin-wave excitations with spin-transfer torques. Phys. Rev. Lett. 92, 207203 (2004).

    CAS  Google Scholar 

  98. Grollier, J. et al. Switching a spin valve back and forth by current-induced domain wall motion. Appl. Phys. Lett. 83, 509 (2003).

    CAS  Google Scholar 

  99. Yamaguchi, A. et al. Real-space observation of current-driven domain wall motion in submicron magnetic wires. Phys. Rev. Lett. 92, 077205 (2004).

    CAS  Google Scholar 

  100. Ravelosona, D., Lacour, D., Katine, J. A., Terris, B. D. & Chappert, C. Nanometer scale observation of high efficiency thermally assisted current-driven domain wall depinning. Phys. Rev. Lett. 95, 117203 (2005).

    CAS  Google Scholar 

  101. Yamanouchi, M., Chiba, D., Matsukura, F. & Ohno, H. Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Nature 428, 539–542 (2004).

    CAS  Google Scholar 

  102. Thiaville, A., Nakatani, Y., Miltat, J. & Suzuki, Y. Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. Europhys. Lett. 69, 990–996 (2005).

    CAS  Google Scholar 

  103. Piechon, F. & Thiaville, A. Spin transfer torque in continuous textures: Semiclassical Boltzmann approach. Phys. Rev. B 75, 174414 (2007).

    Google Scholar 

  104. Himeno, A. et al. Dynamics of a magnetic domain wall in magnetic wires with an artificial neck. J. Appl. Phys. 93, 8430–8432 (2003).

    CAS  Google Scholar 

  105. Hayashi, M. et al. Dependence of current and field driven depinning of domain walls on their structure and chirality in permalloy nanowires. Phys. Rev. Lett. 97, 207205 (2006).

    Google Scholar 

  106. Allwood, D. A., Xiong, G. & Cowburn, R. P. Domain wall diodes in ferromagnetic planar nanowires. Appl. Phys. Lett. 85, 2848–2853 (2004).

    CAS  Google Scholar 

  107. Faulkner, C. C. et al. Artificial domain wall nanotraps in Ni81Fe19 wires. J. Appl. Phys. 95, 6717–6719 (2004).

    CAS  Google Scholar 

  108. Klaui, M. et al. Direct observation of domain-wall configurations transformed by spin currents. Phys. Rev. Lett. 95, 026601 (2005).

    CAS  Google Scholar 

  109. Klaui, M. et al. Current-induced vortex nucleation and annihilation in vortex domain walls. Appl. Phys. Lett. 88, 232507 (2006).

    Google Scholar 

  110. He, J., Li, Z. & Zhang, S. Current-driven vortex domain wall dynamics by micromagnetic simulations. Phys. Rev. B 73, 184408 (2006).

    Google Scholar 

  111. Saitoh, E., Miyajima, H., Yamaoka, T. & Tatara, G. Current-induced resonance and mass determination of a single magnetic domain wall. Nature 432, 203–206 (2004).

    CAS  Google Scholar 

  112. Thomas, L. et al. Oscillatory dependence of current-driven magnetic domain wall motion on current pulse length. Nature 443, 197–200 (2006).

    CAS  Google Scholar 

  113. Thomas, L. et al. Resonant amplification of magnetic domain-wall motion by a train of current pulses. Science 315, 1553–1556 (2007).

    CAS  Google Scholar 

  114. Nakatani, Y., Thiaville, A. & Miltat, J. Faster magnetic walls in rough wires. Nature Mater. 2, 521–523 (2003).

    CAS  Google Scholar 

  115. Lim, C. K. et al. Domain wall displacement induced by subnanosecond pulsed current. Appl. Phys. Lett. 84, 2820–2822 (2004).

    CAS  Google Scholar 

  116. Hayashi, M. et al. Current driven domain wall velocities exceeding the spin angular momentum transfer rate in permalloy nanowires. Phys. Rev. Lett. 98, 037204. (2007).

    Google Scholar 

  117. Yamanouchi, M., Chiba, D., Matsukura, F., Dietl, T. & Ohno, H. Velocity of domain-wall motion induced by electrical current in the ferromagnetic semiconductor (Ga,Mn)As. Phys. Rev. Lett. 96, 096601 (2006).

    CAS  Google Scholar 

  118. Kasai, S., Nakatani, Y., Kobayashi, K., Kohno, H. & Ono, T. Current-driven resonant excitation of magnetic vortices. Phys. Rev. Lett. 97, 107204 (2006).

    Google Scholar 

  119. Cowburn, R. P. & Welland, M. E. Room temperature magnetic quantum cellular automata. Science 287, 1466–1468 (2000).

    CAS  Google Scholar 

  120. Imre, A. et al. Majority logic gate for magnetic quantum-dot cellular automata. Science 311, 205–208 (2006).

    CAS  Google Scholar 

  121. Ney, A., Pampuch, C., Koch, R. & Ploog, K. H. Programmable computing with a single magnetoresistive element. Nature 425, 485–487 (2003).

    CAS  Google Scholar 

  122. Black, W. C. J. & Das, B. Programmable logic using giant-magnetoresistance and spin-dependent tunneling devices. J. Appl. Phys. 87, 6674–6679 (2000).

    CAS  Google Scholar 

  123. Zhao, W. et al. Integration of Spin-RAM technology in FPGA circuits. Proc. ICSICT 799–802 (2006).

  124. Min, B., Motohashi, K., Lodder, C. & Jansen, R. Tunable spin-tunnel contacts to silicon using low-work-function ferromagnets. Nature Mater. 5, 817–822 (2006).

    CAS  Google Scholar 

  125. Hall, K. C., Lau, W. H., Gundogdu, K., Flatte, M. E. & Boggess, T. F. Nonmagnetic semiconductor spin transistor. Appl. Phys. Lett. 83, 2937–2939 (2003).

    CAS  Google Scholar 

  126. Hall, K. C. & Flatte, M. E. Performance of a spin-based insulated gate field effect transistor. Appl. Phys. Lett. 88, 162503 (2006).

    Google Scholar 

  127. Tanaka, M. & Sugahara, S. MOS-based spin devices for reconfigurable logic. IEEE Trans. Electron Dev. 54, 961–976 (2007).

    CAS  Google Scholar 

  128. Pasupathy, A. N. et al. The Kondo effect in the presence of ferromagnetism. Science 306, 86–89 (2004).

    CAS  Google Scholar 

  129. Sahoo, S., Kontos, T., Schonenberger, C. & Surgers, C. Electrical spin injection in multiwall carbon nanotubes with transparent ferromagnetic contacts. Appl. Phys. Lett. 86, 112109 (2005).

    Google Scholar 

  130. Hueso, L. E. et al. Transformation of spin information into large electrical signals using carbon nanotubes. Nature 445, 410–413 (2007).

    CAS  Google Scholar 

  131. Romeike, C., Wegewijs, M. R., Ruben, M., Wenzel, W. & Schoeller, H. Charge-switchable molecular magnet and spin blockade of tunneling. Phys. Rev. B 75, 064404 (2007).

    Google Scholar 

  132. Fert, A., George, J., Jaffres, H. & Mattana, R. Semiconductors between spin-polarized sources and drains. IEEE Trans. Electron Dev. 54, 921–932 (2007).

    CAS  Google Scholar 

  133. Kimura, T., Hamrle, J. & Otani, Y. Estimation of spin-diffusion length from the magnitude of spin-current absorption: multiterminal ferromagnetic/nonferromagnetic hybrid structures. Phys. Rev. B 72, 014461 (2005).

    Google Scholar 

  134. Dery, H., Dalal, P., Cywinski, L. & Sham, L. J. Spin-based logic in semiconductors for reconfigurable large-scale circuits. Nature 447, 573–576 (2007).

    CAS  Google Scholar 

  135. Khomskii, D. Multiferroics: Different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 306, 1–8 (2006).

    CAS  Google Scholar 

  136. Zavaliche, F. et al. Electric field-induced magnetization switching in epitaxial columnar nanostructures. Nano Lett. 5, 1793–1796 (2005).

    CAS  Google Scholar 

  137. Zhao, T. et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nature Mater. 5, 823–829 (2006).

    CAS  Google Scholar 

  138. Chiba, D., Matsukura, F. & Ohno, H. Electric-field control of ferromagnetism in (Ga,Mn)As. Appl. Phys. Lett. 89, 162505 (2006).

    Google Scholar 

  139. Wunderlich, J. et al. Coulomb blockade anisotropic magnetoresistance effect in a (Ga,Mn)As single-electron transistor. Phys. Rev. Lett. 97, 077201 (2006).

    CAS  Google Scholar 

  140. Kimura, T., Otani, Y. & Hamrle, J. Switching magnetization of a nanoscale ferromagnetic particle using nonlocal spin injection. Phys. Rev. Lett. 96, 037201 (2006).

    CAS  Google Scholar 

Download references

Acknowledgements

C.C. acknowledges support from the EU Specific Support Action WIND (IST 033658). The authors also benefit from EU contracts Spinswitch (MRTN-CT-2006-035327) and Nanospin (STREP FET 015728).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Chappert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chappert, C., Fert, A. & Van Dau, F. The emergence of spin electronics in data storage. Nature Mater 6, 813–823 (2007). https://doi.org/10.1038/nmat2024

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2024

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing