Nanoionics-based resistive switching memories

Abstract

Many metal–insulator–metal systems show electrically induced resistive switching effects and have therefore been proposed as the basis for future non-volatile memories. They combine the advantages of Flash and DRAM (dynamic random access memories) while avoiding their drawbacks, and they might be highly scalable. Here we propose a coarse-grained classification into primarily thermal, electrical or ion-migration-induced switching mechanisms. The ion-migration effects are coupled to redox processes which cause the change in resistance. They are subdivided into cation-migration cells, based on the electrochemical growth and dissolution of metallic filaments, and anion-migration cells, typically realized with transition metal oxides as the insulator, in which electronically conducting paths of sub-oxides are formed and removed by local redox processes. From this insight, we take a brief look into molecular switching systems. Finally, we discuss chip architecture and scaling issues.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Classification of the switching characteristics in a voltage sweeping experiment.
Figure 2: Sketch of filamentary conduction in MIM structures.

© 1998 WILEY

Figure 3: Cross-section of a vertical type of MIM switch using Ag+ conducting solid electrolyte.

© 2005 IEEE

Figure 4: Scanning electron micrograph of an atomic switch and its operating mechanism32.
Figure 5: Three-terminal solid electrolyte switch.

© 2006 OUP

Figure 6: Multilevel switching in a Cr-doped SrZrO3 MIM cell operated at 77 K.

© 2000 AIP

Figure 7: Conductance of individual dislocations in SrTiO3.
Figure 8: Area-wide switching of an epitaxial 10-nm SrTiO3 thin film by C-AFM.

© 2007 WILEY

Figure 9: Filamentary structure induced by electroformation in an undoped SrTiO3 single crystal.
Figure 10: Infrared thermal micrograph of a planar Cr-doped SrTiO3 single-crystal cell.

© 2007 WILEY

References

  1. 1

    Hickmott, T. W. Low-frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 33, 2669–2682 (1962).

    CAS  Article  Google Scholar 

  2. 2

    Dearnaley, G., Stoneham, A. M. & Morgan, D. V. Electrical phenomena in amorphous oxide films. Rep. Prog. Phys. 33, 1129–1191 (1970).

    Article  Google Scholar 

  3. 3

    Oxley, D. P. Electroforming, switching and memory effects in oxide thin films. Electrocomponent Sci. Technol. UK 3, 217–224 (1977).

    CAS  Article  Google Scholar 

  4. 4

    Pagnia, H. & Sotnik, N. Bistable switching in electroformed metal-insulator-metal devices. Phys. Status Solidi 108, 11–65 (1988).

    Article  Google Scholar 

  5. 5

    Asamitsu, A., Tomioka, Y., Kuwahara, H. & Tokura, Y. Current switching of resistive states in magnetoresistive manganites. Nature 388, 50–52 (1997).

    CAS  Article  Google Scholar 

  6. 6

    Kozicki, M. N., Yun, M., Hilt, L. & Singh, A. Applications of programmable resistance changes in metal-doped chalcogenides. Pennington NJ USA: Electrochem. Soc. 298–309 (1999).

  7. 7

    Beck, A., Bednorz, J. G., Gerber, C., Rossel, C. & Widmer, D. Reproducible switching effect in thin oxide films for memory applications. Appl. Phys. Lett. 77, 139–141 (2000).

    CAS  Article  Google Scholar 

  8. 8

    Chudnovskii, F. A., Odynets, L. L., Pergament, A. L. & Stefanovich, G. B. Electroforming and switching in oxides of transition metals: the role of metal-insulator transition in the switching mechanism. J. Solid State Chem. 122, 95–99 (1996).

    CAS  Article  Google Scholar 

  9. 9

    Bruyere, J. C. & Chakraverty, B. K. Switching and negative resistance in thin films of nickel oxide. Appl. Phys. Lett. 16, 40–43 (1970).

    CAS  Article  Google Scholar 

  10. 10

    Kim, D. C. et al. Electrical observations of filamentary conductions for the resistive memory switching in NiO films. Appl. Phys. Lett. 88, 202102 (2006).

    Article  Google Scholar 

  11. 11

    Choi, B. J. et al. Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J. Appl. Phys. 98, 033715 (2005).

    Article  Google Scholar 

  12. 12

    Baek, I. G. et al. Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. IEDM Tech. Digest, 587–590 (2005).

  13. 13

    Jeong, D. S., Schroeder, H. & Waser, R. Coexistence of bipolar and unipolar resistive switching behaviors. Electrochem. Solid-State Lett. 10, G51–G53 (2007).

    CAS  Article  Google Scholar 

  14. 14

    Simmons, J. G. & Verderber, R. R. New conduction and reversible memory phenomena in thin insulating films. Proc. R. Soc.Lond. A 301, 77–102 (1967).

    CAS  Article  Google Scholar 

  15. 15

    Ouyang, J. Y., Chu, C. W., Szmanda, C. R., Ma, L. P. & Yang, Y. Programmable polymer thin film and non-volatile memory device. Nature Mater. 3, 918–922 (2004).

    CAS  Article  Google Scholar 

  16. 16

    Bozano, L. D. et al. Organic materials and thin-film structures for cross-point memory cells based on trapping in metallic nanoparticles. Adv. Funct. Mater. 15, 1933–1939 (2005).

    CAS  Article  Google Scholar 

  17. 17

    Guan, W. et al. Fabrication and charging characteristics of MOS capacitor structure with metal nanocrystals embedded in gate oxide. J. Phys. D 40, 2754–2758 (2007).

    CAS  Article  Google Scholar 

  18. 18

    Sawa, A., Fujii, T., Kawasaki, M. & Tokura, Y. Interface resistance switching at a few nanometer thick perovskite manganite active layers. Appl. Phys. Lett. 88, 232112 (2006).

    Article  Google Scholar 

  19. 19

    Fujii, T. et al. Hysteretic current–voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3 . Appl. Phys. Lett. 86, 012107 (2005).

    Article  Google Scholar 

  20. 20

    Lee, D. et al. in Proc. Non-Volatile Memory Technology Symposium (ed. Campbell, K.) 89–93 (IEEE, Piscataway, New Jersey, 2006).

    Google Scholar 

  21. 21

    Hovel, H. J. & Urgell, J. J. Switching and memory characteristics of ZnSe–Ge heterojunctions. J. Appl. Phys. 42, 5076–5083 (1971).

    CAS  Article  Google Scholar 

  22. 22

    Fors, R., Khartsev, S. I. & Grishin, A. M. Giant resistance switching in metal-insulator-manganite junctions: evidence for Mott transition. Phys. Rev. B 71, 045305 (2005).

    Article  Google Scholar 

  23. 23

    Kim, D. S., Kim, Y. H., Lee, C. E. & Kim, Y. T. Colossal electroresistance mechanism in a Au/Pr0.7Ca0.3MnO3/Pt sandwich structure: evidence for a Mott transition. Phys. Rev. B 74, 174430 (2006).

    Article  Google Scholar 

  24. 24

    Meijer, G. I. et al. Valence states of Cr and the insulator-to-metal transition in Cr-doped SrTiO3. Phys. Rev. B 72, 155102 (2005).

    Article  Google Scholar 

  25. 25

    Rozenberg, M. J., Inoue, I. H. & Sanchez, M. J. Nonvolatile memory with multilevel switching: a basic model. Phys. Rev. Lett. 92, 178302 (2004).

    CAS  Article  Google Scholar 

  26. 26

    Rozenberg, M. J., Inoue, I. H. & Sanchez, M. J. Strong electron correlation effects in nonvolatile electronic memory devices. Appl. Phys. Lett. 88, 033510 (2006).

    Article  Google Scholar 

  27. 27

    Esaki, L., Laibowitz, R. B. & Stiles, P. J. Polar Switch. IBM Tech. Discl. Bull. 13, 2161 (1971).

    Google Scholar 

  28. 28

    Kohlstedt, H., Pertsev, N. A., Contreras, J. R. & Waser, R. Theoretical current–voltage characteristics of ferroelectric tunnel junctions. Phys. Rev. B 72, 125341 (2005).

    Article  Google Scholar 

  29. 29

    Tsymbal, E. Y. & Kohlstedt, H. Tunneling across a ferroelectric. Science 313, 181–183 (2006).

    CAS  Article  Google Scholar 

  30. 30

    Waser, R. Nanoelectronics and Information Technology 2nd edn (Wiley-VCH, Weinheim, 2003).

    Google Scholar 

  31. 31

    Maier, J. Nanoionics: ion transport and electrochemical storage in confined systems. Nature Mater. 4, 805–818 (2005).

    CAS  Article  Google Scholar 

  32. 32

    Terabe, K., Hasegawa, T., Nakayama, T. & Aono, M. Quantized conductance atomic switch. Nature 433, 47–50 (2005).

    CAS  Article  Google Scholar 

  33. 33

    Ercker, L. Treatise on Ores and Assaying (1547) (transl. Sisco, A. G. & Smith, C. S., Univ. Chicago, 1951), p. 177.

    Google Scholar 

  34. 34

    Faraday, M. Phil. Trans. R. Soc. Lond. 123, 507–522 (1833).

    Article  Google Scholar 

  35. 35

    Wagner, C. Physical chemistry of ionic crystals involving small concentrations of foreign substances. J. Phys. Chem. 57, 738–742 (1953).

    CAS  Article  Google Scholar 

  36. 36

    Hirose, Y. & Hirose, H. Polarity-dependent memory switching and behaviour of Ag dendrite in Ag-photodoped amorphous As2S3 films. J. Appl. Phys. 47, 2767–2772 (1976).

    CAS  Article  Google Scholar 

  37. 37

    Tamura, T. et al. Switching property of atomic switch controlled by solid electrochemical reaction. Jpn. J. Appl. Phys. 45, L364–L366 (2006).

    CAS  Article  Google Scholar 

  38. 38

    Kaeriyama, S. et al. A nonvolatile programmable solid-electrolyte nanometer switch. IEEE J. Solid-State Circuits USA 40, 168–176 (2005).

    Article  Google Scholar 

  39. 39

    Sakamoto, T. et al. A Ta2O5 solid-electrolyte switch with improved reliability. VLSI Technol. Digest Tech. Pap. (in the press).

  40. 40

    Zheng-Wang et al. Resistive switching mechanism in ZnxCd1– xS nonvolatile memory devices. IEEE Electron Dev. Lett. 28, 14–16 (2007).

    Article  Google Scholar 

  41. 41

    Kozicki, M. N., Gopalan, C., Balakrishnan, M. & Mitkova, M. A low-power nonvolatile switching element based on copper-tungsten oxide solid electrolyte. IEEE Trans. Nanotechnol. 5, 535–544 (2006).

    Article  Google Scholar 

  42. 42

    Schindler, C., Puthen Thermadam, S. C., Kozicki, R. & Waser, M. N. Bipolar and unipolar resistive switching in Cu-doped SiO2 . IEEE Trans. Electron Dev. (in the press).

  43. 43

    van-der-Sluis, P. Non-volatile memory cells based on ZnxCd1– xS ferroelectric Schottky diodes. Appl. Phys. Lett. 82, 4089–4091 (2003).

    CAS  Article  Google Scholar 

  44. 44

    Kund, M. et al. Conductive bridging RAM (CBRAM): an emerging non-volatile memory technology scalable to sub 20 nm. IEDM Tech. Digest, 754–757 (2005).

  45. 45

    Dietrich, S. et al. A nonvolatile 2-Mbit CBRAM memory core featuring advanced read and program control. IEEE J.Solid-State Circuits 42, 839–845 (2007).

    Article  Google Scholar 

  46. 46

    Xie, F. Q., Nittler, L., Obermair, C. & Schimmel, T. Gate-controlled atomic quantum switch. Phys. Rev. Lett. 93, 128303 (2004).

    Article  Google Scholar 

  47. 47

    Banno, N., Sakamoto, T., Hasegawa, T., Terabe, K. & Aono, M. Effect of ion diffusion on switching voltage of solid-electrolyte nanometer switch. Jpn. J. Appl. Phys. 45, 3666–3668 (2006).

    CAS  Article  Google Scholar 

  48. 48

    Wuttig, M. & Yamada, N. Phase change materials for rewriteable data storage. Nature Mater. 6, 824–832 (2007).

    CAS  Article  Google Scholar 

  49. 49

    Baiatu, T., Waser, R. & Hardtl, K. H. DC electrical degradation of perovskite-type titanates. III. A model of the mechanism. J. Am. Ceram. Soc. 73, 1663–1673 (1990).

    CAS  Article  Google Scholar 

  50. 50

    Watanabe, Y. et al. Current-driven insulator-conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals. Appl. Phys. Lett. 78, 3738–3740 (2001).

    CAS  Article  Google Scholar 

  51. 51

    Pinto, R. Filamentary switching and memory action in thin anodic oxides. Phys. Lett. A 35, 155–156 (1971).

    CAS  Article  Google Scholar 

  52. 52

    Beaulieu, R. P., Sulway, D. V. & Cox, C. D. The detection of current filaments in VO2 thin-film switches using the scanning electron microscope. Solid-State Electron. 3, 428–429 (1973).

    Article  Google Scholar 

  53. 53

    Ogimoto, Y., Tamia, Y., Kawasaki, M. & Tokura, Y. Resistance switching memory device with a nanoscale confined current path. Appl. Phys. Lett. 90, 143515 (2007).

    Article  Google Scholar 

  54. 54

    Rossel, C., Meijer, G. I., Bremaud, D. & Widmer, D. Electrical current distribution across a metal-insulator-metal structure during bistable switching. J. Appl. Phys. 90, 2892–2898 (2001).

    CAS  Article  Google Scholar 

  55. 55

    Szot, K., Speier, W., Bihlmayer, G. & Waser, R. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 . Nature Mater. 5, 312–320 (2006).

    CAS  Article  Google Scholar 

  56. 56

    Szot, K., Dittmann, R., Speier, W. & Waser, R. Nanoscale resistive switching. Phys. Status Solidi 1, R86–R88 (2007).

    CAS  Google Scholar 

  57. 57

    Chen, X., Wu, N., Strozier, J. & Ignatiev, A. Spatially extended nature of resistive switching in perovskite oxide thin films. Appl. Phys. Lett. 89, 063507 (2006).

    Article  Google Scholar 

  58. 58

    Janousch, M. et al. Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory. Adv. Mater. 19, 2232–2235 (2007).

    CAS  Article  Google Scholar 

  59. 59

    Pender, L. F. & Fleming, R. J. Memory switching in glow discharge polymerized thin films. J. Appl. Phys. 46, 3426–3431 (1975).

    CAS  Article  Google Scholar 

  60. 60

    Potember, R. S., Poehler, T. O. & Cowan, D. O. Electrical switching and memory phenomena in Cu-TCNQ thin films. Appl. Phys. Lett. 34, 405–407 (1979).

    CAS  Article  Google Scholar 

  61. 61

    Bandyopadhyay, A. & Pal, A. J. Large conductance switching and memory effects in organic molecules for data-storage applications. Appl. Phys. Lett. 82, 1215–1217 (2003).

    CAS  Article  Google Scholar 

  62. 62

    Scott, J. C. & Bozano, L. D. Nonvolatile memory elements based on organic materials. Adv. Mater. 19, 1452–1463 (2007).

    CAS  Article  Google Scholar 

  63. 63

    Karthauser, S. et al. Resistive switching of rose bengal devices: a molecular effect? J. Appl. Phys. 100, 094504 (2006).

    Article  Google Scholar 

  64. 64

    Colle, M., Buchel, M. & de-Leeuw, D. M. Switching and filamentary conduction in non-volatile organic memories. Org. Electron. 7, 305–312 (2006).

    Article  Google Scholar 

  65. 65

    Kever, T., Boettger, U., Schindler, Ch. & Waser, R. On the origin of bistable resistive switching in Cu:TCNQ. Appl. Phys. Lett. 91, 083506 (2007).

    Article  Google Scholar 

  66. 66

    Feringa, B. L. Molecular Switches (Wiley-VCH, Weinheim, 2001).

    Google Scholar 

  67. 67

    Collier, C. P. et al. A [2]catenane-based solid state electronically reconfigurable switch. Science 289, 1172–1175 (2000).

    CAS  Article  Google Scholar 

  68. 68

    Stewart, D. R. et al. Molecule-independent electrical switching in Pt/organic monolayer/Ti devices. Nano Lett. 4, 133–136 (2004).

    CAS  Article  Google Scholar 

  69. 69

    Blackstock, J. J. et al. Internal structure of a molecular junction device: chemical reduction of PtO2 by Ti. J. Phys. Chem. C 111, 16–20 (2007).

    CAS  Article  Google Scholar 

  70. 70

    Li, Z. et al. Two-dimensional assembly and local redox-activity of molecular hybrid structures in an electrochemical environment. Faraday Disc. 131, 121–143 (2005).

    Article  Google Scholar 

  71. 71

    Li, Z., Pobelov, I., Han, B., Wandlowski, T., Blaszczyk, A. & Mayor, M. Conductance of redox-active single molecular junctions: an electrochemical approach. Nanotechnology 18, 1–8 (2007).

    CAS  Google Scholar 

  72. 72

    Lörtscher, E., Ciszek, J. W., Tour, J. & Riel, H. Reversible and controllable switching of a single-molecule junction. Small 2, 973–977 (2006).

    Article  Google Scholar 

  73. 73

    Wu, W. et al. One-kilobit cross-bar molecular memory circuits at 30-nm half-pitch fabricated by nanoimprint lithography. Appl. Phys. A 80, 1173–1178 (2005).

    CAS  Article  Google Scholar 

  74. 74

    Green, J. E. et al. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445, 14–17 (2007).

    Article  Google Scholar 

  75. 75

    Lee, M. J. et al. A low-temperature grown oxide diode as a new switch element for high-density, nonvolatile memories. Adv. Mater. 19, 73–76 (2007).

    CAS  Article  Google Scholar 

  76. 76

    Mustafa, J. & Waser, R. A novel reference scheme for reading passive resistive crossbar memories. IEEE Trans. Nanotechnol. 5, 687–691 (2006).

    Article  Google Scholar 

  77. 77

    Heath, J. R., Kuekes, P. J., Snider, G. S. & Williams, R. S. A defect-tolerant computer architecture: opportunities for nanotechnology. Science 280, 1716–1721 (1998).

    CAS  Article  Google Scholar 

  78. 78

    Snider, G., Kuekes, P., Hogg, T. & Williams, R. S. Nanoelectronic architectures. Appl. Phys. A 80, 1183–1195 (2005).

    CAS  Article  Google Scholar 

  79. 79

    DeHon, A., Randy Huang, & Wawrzynek, J. Stochastic spatial routing for reconfigurable networks. Microprocessors Microsyst. 30, 301–318 (2006).

    Article  Google Scholar 

  80. 80

    Likharev, K. K. & Strukov, D. B. in Introducing Molecular Electronics. Lecture Notes in Physics Vol. 680 (eds Cuniberti, G., Richter, K. & Fagas, G.) 447–477 (Springer, Berlin, 2006).

    Google Scholar 

  81. 81

    Lu, W. & Lieber, C. M. Nanoelectronics from the bottom up. Nature Mater. 6, 841–850 (2006).

    Article  Google Scholar 

  82. 82

    Ignatiev, A. et al. Resistance switching in perovskite thin films. Phys. Stat. Sol. B 243, 2089–2097 (2006).

    CAS  Article  Google Scholar 

  83. 83

    Honigschmid, H. et al. A non-volatile 2Mbit CBRAM memory core featuring advanced read and program control. VLSI Circuits Symp. Tech. Digest, 110–11 (2006).

  84. 84

    Zhirnov, V. V., Cavin -R-K-III, Hutchby, J. A. & Bourianoff, G. I. Limits to binary logic switch scaling—a gedanken model. Proc. IEEE USA 91, 1934–1939 (2003).

    Article  Google Scholar 

  85. 85

    Cavin, R. K., Zhirnov, V. V., Herr, D. J. C., Alba Avila, & Hutchby, J. Research directions and challenges in nanoelectronics. J.Nanoparticle Res. 8, 841–858 (2006).

    Article  Google Scholar 

  86. 86

    Snider, G. S. & Williams, R. S. Nano/CMOS architectures using a field-programmable nanowire interconnect. Nanotechnology 18, 1–11 (2007).

    Google Scholar 

Download references

Acknowledgements

We thank J. G. Bednorz (IBM Research, Zurich), U-In Chung, I. G. Baek and S. O. Park (Samsung Electronics), Y. Zhang (Intel, Santa Clara), R. Bruchhaus (Qimonda, Munich), V. Zhirnov (SRC), and K. Szot and R. Dittmann (Research Center Jülich) for valuable comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rainer Waser.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Waser, R., Aono, M. Nanoionics-based resistive switching memories. Nature Mater 6, 833–840 (2007). https://doi.org/10.1038/nmat2023

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing