Abstract
Doped EuO is an attractive material for the fabrication of proof-of-concept spintronic devices. Yet for decades its use has been hindered by its instability in air and the difficulty of preparing and patterning high-quality thin films. Here, we establish EuO as the pre-eminent material for the direct integration of a carrier-concentration-matched half-metal with the long-spin-lifetime semiconductors silicon and GaN, using methods that transcend these difficulties. Andreev reflection measurements reveal that the spin polarization in doped epitaxial EuO films exceeds 90%, demonstrating that EuO is a half-metal even when highly doped. Furthermore, EuO is epitaxially integrated with silicon and GaN. These results demonstrate the high potential of EuO for spintronic devices.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
von Molnár, S. & Reed, D. New materials for semiconductor spin-electronics. Proc. IEEE 91, 715–726 (2003).
Fiederling, R. et al. Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402, 787–790 (1999).
Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999).
Crooker, S. A. et al. Imaging spin transport in lateral ferromagnet/semiconductor structures. Science 309, 2191–2195 (2005).
Xiao, M., Martin, L., Yablonovitch, E. & Jiang, H. W. Electrical detection of the spin resonance of a single electron in a silicon field-effect transistor. Nature 430, 435–439 (2004).
Dennis, C. L., Sirisathitkul, C., Ensell, G. J., Gregg, J. F. & Thompson, S. M. High current gain silicon-based spin transistor. J. Phys. D 36, 81–87 (2003).
Jonker, B. T. et al. Electrical spin-injection into silicon from a ferromagnetic metal/tunnel barrier contact. Nature Phys. 3, 542–546 (2007).
Gordon, J. P. & Bowers, K. D. Microwave spin echoes from donor electrons in silicon. Phys. Rev. Lett. 1, 368–370 (1958).
Gregg, J. F. et al. The art of spin electronics. J. Magn. Magn. Mater. 175, 1–9 (1997).
Gregg, J. F., Petej, I., Jouguelet, E. & Dennis, C. Spin electronics—a review. J. Phys. D 35, R121–R155 (2002).
Appelbaum, I., Huang, B. & Monsma, D. J. Electronic measurement and control of spin transport in silicon. Nature 447, 295–298 (2007).
Sellmyer, D. & Skomsky, R. Advanced Magnetic Nanostructures Ch. 14, 442–453 (Springer, Berlin, 2005).
Monsma, D. J., Lodder, J. C., Popma, T. J. A. & Dieny, B. Perpendicular hot electron spin-valve effect in a new magnetic field sensor: The spin-valve transistor. Phys. Rev. Lett. 74, 5260–5263 (1995).
Schmidt, G., Ferrand, D., Molenkamp, L. W., Filip, A. T. & van Wees, B. J. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62, R4790–R4793 (2000).
Matthias, B. T., Bozorth, R. M. & Van Fleck, J. H. Ferromagnetic interaction in EuO. Phys. Rev. Lett. 7, 160–161 (1961).
Hubbard, K. J. & Schlom, D. G. Thermodynamic stability of binary oxides in contact with silicon. J. Mater. Res. 11, 2757–2776 (1996).
Hellwege, K.-H. & Madelung, O. (eds) Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology 321 (New Series—Group III, Vol. 17, Springer, Berlin, 1984).
Schoenes, J. & Wachter, P. Exchange optics in Gd-doped EuO. Phys. Rev. B 9, 3097–3105 (1974).
McGuire, T. R. & Shafer, M. W. Ferromagnetic europium compounds. J. Appl. Phys. 35, 984–988 (1964).
von Molnár, S. Transport properties of the europium chalcogenides. IBM J. Res. Develop. 14, 269–275 (1970).
Sattler, K. & Siegmann, H. C. Paramagnetic sheet at the surface of the Heisenberg ferromagnet EuO. Phys. Rev. Lett. 29, 1565–1567 (1972).
Steeneken, P. G. et al. Exchange splitting and charge carrier spin polarization in EuO. Phys. Rev. Lett. 88, 047201 (2002).
Holtzberg, F., McGuire, T. R., Methfessel, S. & Suits, J. C. Effect of electron concentration on magnetic exchange interactions in rare earth chalcogenides. Phys. Rev. Lett. 13, 18–21 (1964).
Mauger, A., Escorne, M., Godart, C., Desfours, J. P. & Archard, J. C. Magnetic properties of Gd doped EuO single crystals. J. Phys. Colloq. 41, C5-263 (1980).
Shapira, Y., Foner, S. & Reed, T. B. EuO. I. Resistivity and Hall effect in fields up to 150 kOe. Phys. Rev. B 8, 2299–2315 (1973).
Zutic, I., Fabian, J. & Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).
Lettieri, J. et al. Epitaxial growth and magnetic properties of EuO on (001) Si by molecular-beam epitaxy. Appl. Phys. Lett. 83, 975–977 (2003).
Petrich, G., von Molnár, S. & Penney, T. Exchange-induced autoionization in Eu-rich EuO. Phys. Rev. Lett. 26, 885–888 (1971).
Oliver, M. R., Dimmock, J. O., McWorther, A. L. & Reed, T. B. Conductivity studies in europium oxide. Phys. Rev. B 5, 1078–1098 (1972).
von Helmolt, R., Wecker, J., Holzapfel, B., Schultz, L. & Samwer, K. Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films. Phys. Rev. Lett. 71, 2331–2333 (1993).
Jin, S. et al. Thousandfold change in resistivity in magnetoresistive La–Ca–Mn–O films. Science 264, 413–415 (1994).
Ahn, K. Y. & Shafer, M. W. Relationship between stoichiometry and properties of EuO films. J. Appl. Phys. 41, 1260–1262 (1970).
Mauger, A. & Godart, C. The magnetic, optical, and transport properties of representatives of a class of magnetic semiconductors: The europium chalcogenides. Phys. Rep. 141, 51–176 (1986).
Beschoten, B. et al. Spin coherence and dephasing in GaN. Phys. Rev. B 63, 121202 (2001).
Abramov, V. N. & Kuznetsov, A. I. Fundamental absorption of Y2O3 and YAlO3 . Fiz. Tverd. Tela 20, 689–694 (1978).
Sinjukow, P. & Nolting, W. Metal-insulator transition in EuO. Phys. Rev. B 68, 125107 (2003).
Andreev, A. F. The thermal conductivity of the intermediate state in superconductors. Sov. Phys. JETP 19, 1228–1231 (1964).
Soulen, R. J. Measuring the spin polarization of a metal with a superconducting point contact. Science 282, 85–88 (1998).
Upadhyay, S. K., Palanisami, A., Louie, R. N. & Buhrman, R. A. Probing ferromagnets with Andreev reflection. Phys. Rev. Lett. 81, 3247–3250 (1998).
Anguelouch, A. et al. Properties of epitaxial chromium dioxide films grown by chemical vapor deposition using a liquid precursor. J. Appl. Phys. 91, 7140–7142 (2002).
Mazin, I. I., Golubov, A. A. & Nadgorny, B. Probing spin polarization with Andreev reflection: A theoretical basis. J. Appl. Phys. 89, 7576–7578 (2001).
McWhan, D. B., Souers, P. C. & Jura, G. Magnetic and structural properties of europium metal and europium monoxide at high pressure. Phys. Rev. 143, 385–389 (1965).
Zimmer, H. G., Takemura, K., Sayassen, K. & Fischer, K. Insulator-metal transition and valence instability in EuO near 130 kbar. Phys. Rev. B 29, 2350–2352 (1984).
DiMarzio, D., Croft, M., Sakai, N. & Shafer, M. W. Effect of pressure on the electrical resistance of EuO. Phys. Rev. B 35, 8891–8893 (1987).
Acknowledgements
A.S. thanks the Alexander von Humboldt Foundation for a research fellowship. The work at Penn State was supported by the Office of Naval Research (ONR) through grants N00014-03-1-0721 and N00014-04-1-0426 monitored by Colin Wood. The work at the University of Augsburg was supported by the BMBF (13N6918), the EU (Nanoxide), the DFG (SFB484) and the ESF (THIOX). The work at Montana State was supported by NSF EEC-0303774 and ONR through contract N00014-03-1-0692. Y.B. acknowledges support from the Russian Foundation for Basic Research through grant 05-02-17175. L.F.K. and D.A.M. acknowledge support under the ONR EMMA MURI monitored by Colin Wood and by the Cornell Center for Materials Research (NSF DMR–0520404 and IMR-0417392). L.F.K. acknowledges financial support by Applied Materials. The Advanced Light Source is supported by the Department of Energy.
Author information
Authors and Affiliations
Corresponding author
Supplementary information
Supplementary Information
Supplementary materials and methods and figures S1-S9 (PDF 4864 kb)
Rights and permissions
About this article
Cite this article
Schmehl, A., Vaithyanathan, V., Herrnberger, A. et al. Epitaxial integration of the highly spin-polarized ferromagnetic semiconductor EuO with silicon and GaN. Nature Mater 6, 882–887 (2007). https://doi.org/10.1038/nmat2012
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat2012
This article is cited by
-
Magnetic and Isothermal Magnetic Entropy Change Behavior of EuS
Journal of Superconductivity and Novel Magnetism (2023)
-
Tunable two-dimensional superconductivity and spin-orbit coupling at the EuO/KTaO3(110) interface
npj Quantum Materials (2022)
-
Making EuO multiferroic by epitaxial strain engineering
Communications Materials (2020)
-
High-throughput computational discovery of In2Mn2O7 as a high Curie temperature ferromagnetic semiconductor for spintronics
npj Computational Materials (2019)
-
First Principle Mechanical and Thermodynamic Properties of Some TbX (X = S, Se) Compounds
Journal of Superconductivity and Novel Magnetism (2019)