Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Intrinsic ripples in graphene


The stability of two-dimensional (2D) layers and membranes is the subject of a long-standing theoretical debate. According to the so-called Mermin–Wagner theorem1, long-wavelength fluctuations destroy the long-range order of 2D crystals. Similarly, 2D membranes embedded in a 3D space have a tendency to be crumpled2. These fluctuations can, however, be suppressed by anharmonic coupling between bending and stretching modes meaning that a 2D membrane can exist but will exhibit strong height fluctuations2,3,4. The discovery of graphene, the first truly 2D crystal5,6, and the recent experimental observation of ripples in suspended graphene7 make these issues especially important. Besides the academic interest, understanding the mechanisms of the stability of graphene is crucial for understanding electronic transport in this material that is attracting so much interest owing to its unusual Dirac spectrum and electronic properties8,9,10,11. We address the nature of these height fluctuations by means of atomistic Monte Carlo simulations based on a very accurate many-body interatomic potential for carbon12. We find that ripples spontaneously appear owing to thermal fluctuations with a size distribution peaked around 80 Å which is compatible with experimental findings7 (50–100 Å). This unexpected result might be due to the multiplicity of chemical bonding in carbon.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: A representative configuration of the N=8,640 sample at T=300 K.
Figure 2: Fourier transform of the correlation function of the normals.
Figure 3: Portion of one typical configuration of the N=8,640 sample at T=300 K.
Figure 4: Radial distribution function for the N=8,640 sample at T=300 K and T=3,500 K as a function of interatomic distance.


  1. Mermin, N. D. Crystalline order in two dimensions. Phys. Rev. 176, 250–254 (1968).

    Article  Google Scholar 

  2. Nelson, D. R., Piran, T. & Weinberg, S. (eds) Statistical Mechanics of Membranes and Surfaces (World Scientific, Singapore, 2004).

  3. Nelson, D. R. & Peliti, L. Fluctuations in membranes with crystalline and hexatic order. J. Physique 48, 1085–1092 (1987).

    Article  CAS  Google Scholar 

  4. Le Doussal, P. & Radzihovsky, L. Self-consistent theory of polymerized membranes. Phys. Rev. Lett. 69, 1209–1212 (1992).

    Article  CAS  Google Scholar 

  5. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  6. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  7. Meyer, J. C. et al. The structure of suspended graphene membrane. Nature 446, 60–63 (2007).

    Article  CAS  Google Scholar 

  8. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  CAS  Google Scholar 

  9. Zhang, Y., Tan, J. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article  CAS  Google Scholar 

  10. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  11. Katsnelson, M. I. Graphene: Carbon in two dimensions. Mater. Today 10, 20–27 (2007).

    Article  CAS  Google Scholar 

  12. Los, J. H., Ghiringhelli, L. M., Meijer, E. J. & Fasolino, A. Improved long-range reactive bond-order potential for carbon. I. Construction. Phys. Rev. B 72, 214102 (2005).

    Article  Google Scholar 

  13. Car, R. & Parrinello, M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985).

    Article  CAS  Google Scholar 

  14. Ghiringhelli, L. M., Los, J. H., Meijer, E. J., Fasolino, A. & Frenkel, D. Modeling the phase diagram of carbon. Phys. Rev. Lett. 94, 145701 (2005).

    Article  Google Scholar 

  15. Chandler, D. Introduction to Modern Statistical Mechanics Chaps 3 and 6 (Oxford Univ. Press, New York, 1987).

    Google Scholar 

  16. Carlsson, J. M. & Scheffler, M. Structural, electronic, and chemical properties of nanoporous carbon. Phys. Rev. Lett. 96, 046806 (2006).

    Article  Google Scholar 

  17. Bowick, M. J. in Statistical Mechanics of Membranes and Surfaces (eds Nelson, D. R., Piran, T. & Weinberg, S.) Ch. 11 (World Scientific, Singapore, 2004).

    Google Scholar 

  18. Abramovitz, F. F. & Nelson, D. R. Diffraction from polymerized membranes. Science 249, 393 (1990).

    Article  Google Scholar 

  19. Niclow, R., Wakabayashi, N. & Smith, H. G. Lattice dynamics of pyrolytic graphite. Phys. Rev. B 5, 4951–4962 (1972).

    Article  Google Scholar 

  20. Tarjus, G., Kivelson, S. A., Nussinov, Z. & Viot, P. The frustrated-based approach of supercooled liquids and the glass transition: A review and critical assessment. J. Phys. Condens. Matter 17, R1143–R1182 (2005).

    Article  CAS  Google Scholar 

  21. Katsnelson, M. I. & Fasolino, A. Solvent-driven formation of bolaamphiphilic vesicles. J. Phys. Chem. B 110, 30–32 (2006).

    Article  CAS  Google Scholar 

  22. Manyuhina, O. V. et al. Anharmonic magnetic deformation of self-assembled molecular nanocapsules. Phys. Rev. Lett. 98, 146101 (2007).

    Article  CAS  Google Scholar 

  23. Lubensky, T. C. & MacKintosh, F. C. Theory of “rippled” phases of liquid bilayers. Phys. Rev. Lett. 71, 1565–1568 (1993).

    Article  CAS  Google Scholar 

  24. Mounet, N. & Marzari, N. First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives. Phys. Rev. B 71, 205214 (2005).

    Article  Google Scholar 

  25. Morozov, S. V. et al. Strong suppression of weak localization in graphene. Phys. Rev. Lett. 97, 016801 (2006).

    Article  CAS  Google Scholar 

  26. Castro Neto, A. H. & Kim, E. A. Charge inhomogeneity and the structure of graphene sheets. Preprint at <> (2007).

  27. Geim, A. K. & Katsnelson, M. I. Electronic scattering on microscopic corrugations in graphene. Phil. Trans. R. Soc. A (in the press); preprint at <> (2007).

Download references


We are grateful to D. Nelson, J. C. Maan, A. Geim, K. Novoselov and J. Meyer for helpful discussions. This work was supported by the Stichting voor Fundamenteel Onderzoek der Materie (FOM), the Netherlands.

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. Fasolino.

Supplementary information

Supplementary Information

Supplementary information (PDF 79 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fasolino, A., Los, J. & Katsnelson, M. Intrinsic ripples in graphene. Nature Mater 6, 858–861 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing