Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Materials science challenges for high-temperature superconducting wire

Abstract

Twenty years ago in a series of amazing discoveries it was found that a large family of ceramic cuprate materials exhibited superconductivity at temperatures above, and in some cases well above, that of liquid nitrogen. Imaginations were energized by the thought of applications for zero-resistance conductors cooled with an inexpensive and readily available cryogen. Early optimism, however, was soon tempered by the hard realities of these new materials: brittle ceramics are not easily formed into long flexible conductors; high current levels require near-perfect crystallinity; and — the downside of high transition temperature — performance drops rapidly in a magnetic field. Despite these formidable obstacles, thousands of kilometres of high-temperature superconducting wire have now been manufactured for demonstrations of transmission cables, motors and other electrical power components. The question is whether the advantages of superconducting wire, such as efficiency and compactness, can outweigh the disadvantage: cost. The remaining task for materials scientists is to return to the fundamentals and squeeze as much performance as possible from these wonderful and difficult materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: There are two main technologies being used in the manufacture of coated-conductor tape.
Figure 2: The critical current density of YBCO decreases sharply with film thickness and applied magnetic field — improvements are needed in both areas to increase the commercial viability of HTS coated conductors.
Figure 3: Transmission electron microscope image of a laser-deposited YBCO film on a SrTiO3-buffered MgO crystal.
Figure 4: Comparison of the angular dependence of different film types at 1 T shows that the situation is complex and no single orientation can tell the full story.
Figure 5: By periodically inserting 30-nm CeO2 layers every 0.5 μm or so in a thick YBCO film (inset: TEM image), a higher critical current density is maintained.
Figure 6: Comparison of the self-field Jc values for enhanced samples from Table 1 with the unmodified PLD films from Fig. 2a.
Figure 7: Many attempts to enhance the performance of YBCO in a magnetic field have produced results that are no better than standard YBCO.
Figure 8: Three factors that determine Jc in a magnetic field are the self-field value, the extent of the plateau, and the rate of decay beyond the plateau.

Similar content being viewed by others

References

  1. Bednorz, G. & Muller, K. A. Possible high-Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B 64, 189–193 (1986).

    CAS  Google Scholar 

  2. Heine, K., Tenbrink, J. & Thoner, M. High field critical current densities in Bi2Sr2CaCu2O8+x / Ag-wires. Appl. Phys. Lett. 55, 2441–2443 (1989).

    CAS  Google Scholar 

  3. Iijima, Y., Tanabe, N., Kohno, O. & Ikeno, Y. In-plane aligned YBa2Cu3O7-x thin films deposited on polycrystalline metallic substrates. Appl. Phys. Lett. 60, 769–771 (1992).

    CAS  Google Scholar 

  4. Reade, R. P., Berdahl, P., Russo, R. E. & Garrison, S. M. Laser deposition of biaxially textured yttria-stabilized zirconia buffer layers on polycrystalline metallic alloys for high critical current Y-Ba-Cu-O thin films. Appl. Phys. Lett. 61, 2231–2233 (1992).

    CAS  Google Scholar 

  5. Doi, T. J., Yuasa, T., Ozawa, T. & Higashiyama, K. in Proc. 7th Int. Symp. Superconductivity (ISS 1994) 817–820 (Kitakyushu, Japan, 1994).

    Google Scholar 

  6. Wu, X. D. et al. Properties of YBa2Cu3O7-δ thick films on flexible buffered metallic substrates. Appl. Phys. Lett. 67, 2397–2399 (1995).

    CAS  Google Scholar 

  7. Goyal, A. et al. High critical current density superconducting tapes by epitaxial deposition of YBa2Cu3Ox thick films on biaxially textured metals. Appl. Phys. Lett. 69, 1795–1797 (1996).

    CAS  Google Scholar 

  8. Larbalestier, D., Gurevich, A., Feldmann, D. M. & Polyanskii, A. High-Tc superconducting materials for electric power applications. Nature 414, 368–377 (2001).

    CAS  Google Scholar 

  9. Selvamanicam, V. et al. Progress in scale-up of second generation HTS conductor. Phys. C doi:10.1016/j.physc.2007.04.236 (2007).

  10. Rupich, M. et al. in US Department of Energy Wire Development and Applications Workshop (Panama City, Florida, 2007); available at http://www.energetics.com/wire07/agenda.html.

    Google Scholar 

  11. Ibi, A. et al. Development of long YBCO coated conductors by IBAD-PLD method. Physica C 445–448, 525–528 (2006).

    Google Scholar 

  12. D'Errico, R. A. SuperPower announces first major wire shipment. The Business Review (December 20, 2006); available at <http://albany.bizjournals.com/albany/stories/2006/12/18/daily35.html>.

  13. Paranthaman, M. P. & Izumi, T. (eds) High-performance YBCO-coated superconductor wires. Mater. Res. Soc. Bull. 29, 533–589 (2004).

    CAS  Google Scholar 

  14. Roas, B., Hensel, B., Saemann-Ischenko, G. & Schultz, L. Irradiation-induced enhancement of the critical current density of epitaxial YBa2Cu3O7-xthin films. Appl. Phys. Lett. 54, 1051–1053 (1989).

    CAS  Google Scholar 

  15. Wu, X. D. et al. Large critical current densities in YBa2Cu3O7-x thin films made at high deposition rates. Appl. Phys. Lett. 57, 523–525 (1990).

    CAS  Google Scholar 

  16. Sarrao, J. & Kwok, W. K. Basic Research Needs for Superconductivity (US DOE, Washington, DC, 2006); <http://www.sc.doe.gov/bes/reports/abstracts.html#S>.

    Google Scholar 

  17. Dimos, D., Chaudhari, P. & Mannhart, J. Superconducting transport properties of grain boundaries in YBa2Cu3O7 bicrystals. Phys. Rev. B 41, 4038–4049 (1990).

    CAS  Google Scholar 

  18. Foltyn, S. R. et al. Strongly coupled critical current density values achieved in YBa2Cu3O7-δ coated conductors with near-single-crystal texture. Appl. Phys. Lett. 82, 4519–4521 (2003).

    CAS  Google Scholar 

  19. Feldmann, D. M. et al. Grain orientations and grain boundary networks of YBa2Cu3O7-δ films deposited by metalorganic and pulsed laser deposition on biaxially textured Ni-W substrates. J. Mater. Res. 21, 923–934 (2006).

    CAS  Google Scholar 

  20. Campbell, A. M. & Evetts, J. E. Flux vortices and transport current in type-II superconductors. Adv. Phys. 21, 194–428 (1972).

    Google Scholar 

  21. Larkin, A. I. & Ovchinnikov, Yu. N. Pinning in Type II superconductors. J. Low Temp. Phys. 34, 409–428 (1979).

    Google Scholar 

  22. Blatter, G., Feigel'man, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994).

    CAS  Google Scholar 

  23. Tinkham, M. Introduction to Superconductivity (McGraw Hill, New York, 1975).

    Google Scholar 

  24. Hwa, T., Le Doussal, P., Nelson, D. R. & Vinokur, V. M. Flux pinning and forced vortex entanglement by splayed columnar defects. Phys. Rev. Lett. 71, 3545–3548 (1993).

    CAS  Google Scholar 

  25. Civale, L., et al. Reducing vortex motion in YBa2Cu3O7 crystals with splay in columnar defects. Phys. Rev. B 50, 4102–4105 (1994).

    CAS  Google Scholar 

  26. Giapintzakis, J. et al. Production and identification of flux-pinning defects by electron irradiation in YBa2Cu3O7-x single crystals. Phys. Rev. B 45, 10677–10683 (1992).

    CAS  Google Scholar 

  27. Civale, L. et al. Defect independence of the irreversibility line in proton irradiated Y-Ba-Cu-O crystals. Phys. Rev. Lett. 65, 1164–1167 (1990).

    CAS  Google Scholar 

  28. van Dover, R. B. et al. Critical currents near 106 Acm−2 at 77 K in neutron-irradiated single-crystal YBa2Cu3O7 . Nature 342, 55–57 (1989).

    CAS  Google Scholar 

  29. Sauerzopf, F. M. et al. Neutron-irradiation effects on critical current densities in single-crystalline YBa2Cu3O7-δ . Phys. Rev. B 43, 3091–3100 (1991).

    CAS  Google Scholar 

  30. Civale L. et al. Vortex confinement by columnar defects in YBa2Cu3O7 crystals: Enhanced pinning at high fields and temperatures. Phys. Rev. Lett. 67, 648–651 (1991).

    CAS  Google Scholar 

  31. Schindler, W., Roas, B., Saemann-Ischenko, G., Schultz, L. & Gerstenberg, H. Anisotropic enhancement of the critical current density of epitaxial YBa2Cu3O7–x films by fast neutron irradiation. Physica C 169, 117–122 (1989).

    Google Scholar 

  32. Roas, B. et al. Effects of 173 MeV 129Xe ion irradiation on epitaxial YBa2Cu3O7–x films. Europhys. Lett. 11 669–674 (1990).

    CAS  Google Scholar 

  33. Christen, D. K. et al. Orientation-dependent critical currents in YBa2Cu3O7-x epitaxial thin films: evidence for intrinsic flux pinning? AIP Conf. Proc. 219, 336–342 (1991).

    CAS  Google Scholar 

  34. Dam, B. et al. Origin of high critical currents in YBa2Cu3O7-δ superconducting thin films. Nature 399, 439–442 (1999).

    CAS  Google Scholar 

  35. Babaei Brojeny, A. A. & Clem, J. R. Self-field effects upon the critical current density of flat superconducting strips. Supercond. Sci. Technol. 18, 888–895 (2005).

    Google Scholar 

  36. Daley, J. G. in US Department of Energy Wire Development Workshop (St. Petersburg, Florida 2006); available at <http://www.energetics.com/meetings/wire05/pdfs/session8/session8c.pdf>.

    Google Scholar 

  37. Smith, J. A., Cima, M. J. & Sonnenberg, N. High critical current density thick MOD-derived YBCO films. IEEE Trans. Appl. Supercond, 9, 1531–1534 (1999).

    Google Scholar 

  38. Araki, T. & Hirabayashi, I. Review of a chemical approach to YBa2Cu3O7-x -coated superconductors – metalorganic deposition using trifluoroacetates. Supercond. Sci. Technol. 16, R71–R94 (2003).

    CAS  Google Scholar 

  39. Palau, A., Puig, T., Obradors, X., Feenstra, R. & Gapud, A. A. Correlation between grain and grain-boundary critical current densities in ex situ coated conductors with variable YBa2Cu3O7-δ layer thickness. Appl. Phys. Lett. 88, 122502 (2006).

    Google Scholar 

  40. Kim, S. I. et al. Mechanisms of weak thickness dependence of the critical current density in strong-pinning ex situ metal-organic-deposition-route YBa2Cu3O7-x coated conductors. Supercond. Sci. Technol. 19, 968–979 (2006).

    CAS  Google Scholar 

  41. Luborsky, F. E. et al. Reproducible sputtering and properties of Y-Ba-Cu-O films of various thicknesses. J. Appl. Phys. 64, 6388–6391 (1988).

    CAS  Google Scholar 

  42. Foltyn, S. R. et al. Relationship between film thickness and the critical current of YBa2Cu3O7-δ coated conductors. Appl. Phys. Lett. 75, 3692–3694 (1999).

    CAS  Google Scholar 

  43. Foltyn, S. R. et al. Overcoming the barrier to 1000 A/cm-width superconducting coatings. Appl. Phys. Lett. 87, 162505 (2005).

    Google Scholar 

  44. Wang, H., Foltyn, S. R., Arendt, P. N., Jia, Q. X. & Zhang, X. Identification of the misfit dislocations at YBa2Cu3O7-δ / SrTiO3 interface using moiré fringe contrast. Physica C 144, 1–4 (2006).

    Google Scholar 

  45. Foltyn, S. R. & Civale, L. in US Department of Energy Superconductivity for Electric Systems Annual Peer Review (Arlington, Virginia, 2006); available at <http://www.energetics.com/meetings/supercon06/agenda.html>.

    Google Scholar 

  46. Wang, X. & Wu, J. Z. Effect of interlayer magnetic coupling on the Jc of YBa2Cu3O7/insulator/YBa2Cu3O7 trilayers. Appl. Phys. Lett. 88, 062513 (2006).

    Google Scholar 

  47. Gurevich, A. Thickness dependence of critical currents in thin superconductors. Preprint available at <http://lanl.arxiv.org/abs/cond-mat/0207526> (2002).

  48. Jia, Q. X., Foltyn, S. R., Arendt, P. N. & Smith, J. F. High-temperature superconducting thick films with enhanced supercurrent carrying capability. Appl. Phys. Lett. 80, 1601–1603 (2002).

    CAS  Google Scholar 

  49. Crisan, A., Fujiwara, S., Nie, J. C., Sundaresan, A. & Ihara, H. Sputtered nanodots: a costless method for inducing effective pinning centers in superconducting films. Appl. Phys. Lett. 79, 4547–4549 (2001).

    CAS  Google Scholar 

  50. Aytug, T. et al. Enhancement of flux pinning and critical currents in YBa2Cu3O7-δ films by nanoscale iridium pretreatment of substrate surfaces. J. Appl. Phys. 98, 114309 (2005).

    Google Scholar 

  51. Matsumoto, K. et al. Enhancement of critical current density of YBCO films by introduction of artificial pinning centers due to the distributed nano-scaled Y2O3 islands on substrates. Physica C 412–414, 1267–1271 (2004).

    Google Scholar 

  52. Mele, P. et al. Critical current enhancement in PLD YBa2Cu3O7-x films using artificial pinning centers. Physica C 445–448, 648–651 (2006).

    Google Scholar 

  53. Nie, J. C. et al. Evidence for c-axis correlated vortex pinning in YBa2Cu3O7-δ films on sapphire buffered with an atomically flat CeO2 layer having a high density of nanodots. Supercond. Sci. Technol. 17, 845–852 (2004).

    CAS  Google Scholar 

  54. Maiorov, B. et al. Influence of naturally grown nanoparticles at the buffer layer in the flux pinning in YBa2Cu3O7 coated conductors. Supercond. Sci. Technol. 19, 891–895 (2006).

    CAS  Google Scholar 

  55. Holesinger, T. G. et al. A comparison of buffer layer architectures on continuously processed YBCO coated conductors based on the IBAD YSZ process. IEEE Trans. Appl. Supercond. 11, 3359–3364 (2001).

    Google Scholar 

  56. Haugan, T., Barnes, P. N., Wheeler, R., Meisenkothen, F. & Sumption, M. Addition of nanoparticle dispersions to enhance flux pinning of the YBa2Cu3O7-x superconductor. Nature 430, 867–870 (2004).

    CAS  Google Scholar 

  57. Haugan, T. et al. Flux pinning strengths and mechanisms of YBCO with nanoparticle additions. IEEE Trans. Appl. Supercond. (in the press).

  58. MacManus-Driscoll, J. L. et al. Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7–x + BaZrO3 . Nature Mater. 3, 439–443 (2004).

    CAS  Google Scholar 

  59. Yamada, Y. et al. Epitaxial nanostructure and defects effective for pinning in Y(RE)Ba2Cu3O7-x coated conductors. Appl. Phys. Lett. 87, 132502 (2005).

    Google Scholar 

  60. Goldstein, L., Glas, F., Marzin, J. Y., Charasse, M. N. & Le Roux, G. Growth by molecular beam epitaxy and characterization of InAs/GaAs strained-layer superlattices. Appl. Phys. Lett. 47, 1099–1101 (1985).

    CAS  Google Scholar 

  61. Shchukin, V. A. & Bimberg, D. Spontaneous ordering of nanostructures on crystal surfaces. Rev. Mod. Phys. 71, 1125–1171 (1999).

    CAS  Google Scholar 

  62. Wang, H. et al. Microstructure and transport properties of Y-rich YBa2Cu3O7-δ thin films. J. Appl. Phys. 100, 053904 (2006).

    Google Scholar 

  63. Takahashi, K. et al. Investigation of thick PLD-GdBCO and ZrO2 doped GdBCO coated conductors with high critical current on PLD-CeO2 capped IBAD-GZO substrate tapes. Supercond. Sci. Technol. 19, 924–929 (2006).

    CAS  Google Scholar 

  64. Goyal, A. et al. Irradiation-free, columnar defects comprised of self-assembled nanodots and nanorods resulting in strongly enhanced flux-pinning in YBa2Cu3O7-δ films. Supercond. Sci. Technol. 18, 1533–1538 (2005).

    CAS  Google Scholar 

  65. Pan, V. et al. Supercurrent transport in YBa2Cu3O7-δ epitaxial thin films in a dc magnetic field. Phys. Rev. B 73, 054508 (2006).

    Google Scholar 

  66. Gutierrez, J. et al. Strong isotropic flux pinning in YBa2Cu3O7–x–BaZrO3 films derived from chemical solutions. Nature Mater. 6, 367–373 (2007).

    CAS  Google Scholar 

  67. Lin, J. G. et al. Origin of the R-ion effect on Tc in RBa2Cu3O7 . Phys. Rev. B 51, 12900–12903 (1995).

    CAS  Google Scholar 

  68. Kwon, C. et al. Improved superconducting properties of SmBa2Cu3O7-δ films using YBa2Cu3O7-δ buffer layers. Phil. Mag. B 80, 45–51 (2000).

    CAS  Google Scholar 

  69. Pradhan, A. K., Muralidhar, M., Murakami, M. & Koshizuki, N. Studies of flux pinning behaviour in melt processed ternary (Nd-Eu-Gd)Ba2Cu3Oy superconductors. Supercond. Sci. Technol. 13, 761–765 (2000).

    CAS  Google Scholar 

  70. Gibson, G., Cohen, L. F., Humphreys, R. G. & MacManus-Driscoll, J. L. A Raman measurement of cation disorder in YBa2Cu3O7-x thin films. Physica C 333, 139–145 (2000).

    CAS  Google Scholar 

  71. Venkataraman, K., Baurceanu, R. & Maroni, V. A. Characterization of MBa2Cu3O7-x thin films by Raman microspectroscopy. Appl. Spectrosc. 59, 639–649 (2005).

    CAS  Google Scholar 

  72. Jia, Q. X. et al. Comparative study of REBa2Cu3O7 films for coated conductors. IEEE Trans. Appl. Supercond. 15, 2723–2726 (2005).

    CAS  Google Scholar 

  73. Kwon, C et al. Fabrication and characterization of (rare-earth)-barium-copper-oxide (RE123 with RE = Y, Er, and Sm) films. IEEE Trans. Appl. Supercond. 9, 1575–1578 (1999).

    Google Scholar 

  74. Stauble-Pumpin, B. et al. Growth mechanisms of coevaporated SmBa2Cu3Oy thin films. Phys. Rev. B 52, 7604–7628 (1995).

    CAS  Google Scholar 

  75. Jia, Q. X., Foltyn, S. R., Coulter, J. Y., Smith, J. F. & Maley, M. P. Characterization of superconducting SmBa2Cu3O7 films grown by pulsed laser deposition. J. Mater. Res. 17, 2599–2603 (2002).

    CAS  Google Scholar 

  76. Sudoh, K., Yoshida, Y. & Takai, Y. Effect of deposition conditions and solid solution on the Sm1+xBa2-xCu3O6+δ thin films prepared by pulsed laser deposition. Physica C 384, 178–184 (2003).

    CAS  Google Scholar 

  77. Konishi, M. et al. Growth and characterization of Sm-Ba-Cu-O films and other RE-Ba-Cu-O films on PLD-CeO2/IBAD-GZO/metal substrates. J. Phys. Conf. Series 43, 174–177 (2006).

    CAS  Google Scholar 

  78. MacManus-Driscoll, J. L., Alonso, J. A., Wang, P. C., Geballe, T. H. & Bravman, J. C. Studies of structural disorder in ReBa2Cu3O7-x thin films (Re = rare earth) as a function of rare-earth ionic radius and film deposition condition conditions. Physica C 232, 288–308 (1994).

    CAS  Google Scholar 

  79. Jia, Q. X. et al. The role of a superconducting seed layer in the structural and transport properties of EuBa2Cu3O7-x films. Appl. Phys. Lett. 83, 1388–1390 (2003).

    CAS  Google Scholar 

  80. Radhika Devi, A. et al. Enhanced critical current density due to flux pinning from lattice defects in pulsed laser ablated Y1-xDyxBa2Cu3O7–δ thin films. Supercond. Sci. Technol. 13, 935–939 (2000).

    Google Scholar 

  81. Konishi, M. et al. Jc-B characteristics of RE-Ba-Cu-O (RE = Sm, Er, and [Gd,Er]) films on PLD-CeO2/IBAD-GZO/metal substrates. Physica C 445–448, 633–636 (2006).

    Google Scholar 

  82. Cai, B., Holzapfel, B., Hanisch, J., Fernandez, L. & Schultz, L. Magnetotransport and flux pinning characteristics in RBa2Cu3O7-δ (R = Gd, Eu, Nd) and (Gd1/3Eu1/3Nd1/3)Ba2Cu3O7-δ high-Tc superconducting thin films on SrTiO3 (100). Phys. Rev. B 69, 104531 (2004).

    Google Scholar 

  83. MacManus-Driscoll, J. L. et al. Systematic enhancement of in-field critical current density with rare-earth ion size variance in superconducting rare-earth barium cuprate films. Appl. Phys. Lett. 84, 5329–5331 (2004).

    CAS  Google Scholar 

  84. Rodriguez-Martinez, L. M. & Attfield, J. P. Cation disorder and size effects in magnetorestrictive manganese oxide perovskites. Phys. Rev. B 54, R15622–R15625 (1996).

    CAS  Google Scholar 

  85. MacManus-Driscoll, J. L. et al. Rare earth ion size effects and enhanced critical current densities in Y2/3Sm1/3Ba2Cu3O7-x coated conductors. Appl. Phys. Lett. 86, 032505 (2005).

    Google Scholar 

  86. Wee, S. H. et al. Strong flux-pinning in epitaxial NdBa2Cu3O7-δ films with columnar defects comprised of self-assembled nanodots of BaZrO3 . Supercond. Sci. Technol. 19, L42–L45 (2006).

    CAS  Google Scholar 

  87. Campbell, T. A. et al. Flux pinning effects of Y2O3 nanoparticulate dispersions in multilayered YBCO thin films. Physica C 423, 1–8 (2005).

    CAS  Google Scholar 

  88. Gapud, A. A., Feenstra, R., Christen, D. K., Thompson, J. R. & Holesinger, T. G. Temperature and magnetic field dependence of critical currents in YBCO coated conductors with processing-induced variations in pinning properties. IEEE Trans. Appl. Supercond. 15, 2578–2581 (2005).

    CAS  Google Scholar 

  89. Cui, X. M. et al. Enhancement of flux pinning of TFA-MOD YBCO thin films by embedded nanoscale Y2O3 . Supercond. Sci. Technol. 19, 844–847 (2006).

    CAS  Google Scholar 

  90. Solovyov, V. F. et al. High critical currents by isotropic magnetic-flux-pinning centres in a 3-μm-thick YBa2Cu3O7 superconducting coated conductor. Supercond. Sci. Technol. 20, L20–L23 (2007).

    CAS  Google Scholar 

  91. Song, X. et al. Evidence for strong flux pinning by small dense nanoprecipitates in a Sm-doped YBa2Cu3O7–δ coated conductor. Appl. Phys. Lett. 88, 212508 (2006).

    Google Scholar 

  92. Zhang, W. et al. Control of flux pinning in MOD YBCO coated conductor. IEEE Trans. Appl. Supercond. (in the press).

  93. Sudoh, K., Yoshida, Y. & Taki, Y. Effect of deposition conditions and solid solution on the Sm1+xBa2-xCu3O6+δ thin films prepared by pulsed laser deposition. Physica C 384, 178–184 (2003).

    CAS  Google Scholar 

  94. Yoshida, Y. et al. High-critical-current-density epitaxial films of SmBa2Cu3O7-x in high fields. Jpn. J. Appl. Phys. 44, L129–L132 (2005).

    CAS  Google Scholar 

  95. Yoshida, Y. et al. High-critical-current-density SmBa2Cu3O7-x films induced by surface nanoparticle. Jpn. J. Appl. Phys. 44, L546–L548 (2005).

    CAS  Google Scholar 

  96. Maiorov, B & Civale, L. in Flux pinning and ac loss studies on YBCO coated conductors (eds. Paranthaman, M. P. & Selvamanickam, V.) (Nova Science, in the press).

  97. Selvamanickam, V., Xie, Y., Reeves, J. & Chen, Y. MOCVD-based YBCO-coated conductors. Mater. Res. Soc. Bull. 29, 579–582 (2004).

    CAS  Google Scholar 

  98. Holesinger, T. et al. Progress in nano-engineered microstructures for tunable high-current, high temperature superconducting wires. Adv. Mater. (in the press).

  99. Hanisch, J., Cai, C., Huhne, R., Schultz, L. & Holzapfel, B. Formation of nanosized BaIrO3 precipitates and their contribution to flux pinning in Ir-doped YBa2Cu3O7-δ quasi-multilayers. Appl. Phys. Lett. 86, 122508 (2005).

    Google Scholar 

  100. Varanasi, C. V. et al. Flux pinning enhancement in YBa2Cu3O7-x films with BaSnO3 nanoparticles. Supercond. Sci. Technol. 19, L37–L41 (2006).

    CAS  Google Scholar 

  101. Kobayashi, H. et al. Investigation of magnetic properties of YBCO film with artificial pinning centers on PLD/IBAD metal substrate. Physica C 445–448, 625–627 (2006).

    Google Scholar 

  102. Kang, S. et al. High-performance high-Tc superconducting wires. Science 311, 1911–1914 (2006).

    CAS  Google Scholar 

  103. Cai, C., Holzapfel, B., Hanisch, J. & Schultz, L. Direct evidence for tailorable flux-pinning force and its anisotropy in RBa2Cu3O7-δ multilayers. Phys. Rev. B 70, 212501 (2004).

    Google Scholar 

  104. Miller, D. J., Holesinger, T. G., Feldmann, D. M. & Rupich, M. W. in US Department of Energy Superconductivity for Electric Systems Annual Peer Review (Arlington, Virginia, 2006); available at <http://www.energetics.com/meetings/supercon06/agenda>.

    Google Scholar 

  105. Selvamanickam, V, Yie, Y. & Reeves, J. in US Department of Energy Superconductivity for Electric Systems Annual Peer Review (Arlington, Virginia, 2006); available at <http://www.energetics.com/meetings/supercon06/agenda>.

    Google Scholar 

  106. Kang, S., Leonard, K. J., Martin, P. M., Li, J. & Goyal, A. Strong enhancement of flux pinning in YBa2Cu3O7-δ multilayers with columnar defects comprised of self-assembled BaZrO3 nanodots. Supercond. Sci. Technol. 20, 11–15 (2007).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Foltyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foltyn, S., Civale, L., MacManus-Driscoll, J. et al. Materials science challenges for high-temperature superconducting wire. Nature Mater 6, 631–642 (2007). https://doi.org/10.1038/nmat1989

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1989

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing