Letter | Published:

Quantum-spin-liquid states in the two-dimensional kagome antiferromagnets ZnxCu4−x(OD)6Cl2

Nature Materials volume 6, pages 853857 (2007) | Download Citation

Abstract

A three-dimensional system of interacting spins typically develops static long-range order when it is cooled. If the spins are quantum (S=1/2), however, novel quantum paramagnetic states may appear. The most highly sought state among them is the resonating-valence-bond state1,2, in which every pair of neighbouring quantum spins forms an entangled spin singlet (valence bonds) and these singlets are quantum mechanically resonating among themselves. Here we provide an experimental indication for such quantum paramagnetic states existing in frustrated antiferromagnets, ZnxCu4−x(OD)6Cl2, where the S=1/2 magnetic Cu2+ moments form layers of a two-dimensional kagome lattice. We find that in Cu4(OD)6Cl2, where distorted kagome planes are weakly coupled, a dispersionless excitation mode appears in the magnetic excitation spectrum below 20 K, whose characteristics resemble those of quantum spin singlets in a solid state, known as a valence-bond solid, that breaks translational symmetry. Doping with non-magnetic Zn2+ ions reduces the distortion of the kagome lattice, and weakens the interplane coupling but also dilutes the magnetic occupancy of the kagome lattice. The valence-bond-solid state is suppressed, and for ZnCu3(OD)6Cl2, where the kagome planes are undistorted and 90% occupied by the Cu2+ ions, the low-energy spin fluctuations become featureless.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Resonating valence bonds—new kind of insulator. Mater. Res. Bull. 8, 153–160 (1973).

  2. 2.

    & Ground-state properties of anisotropic triangular antiferromagnet. Phil. Mag. 30, 423–440 (1974).

  3. 3.

    The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

  4. 4.

    , & Topology of the resonating valence-bond state—solitons and high-Tc superconductivity. Phys. Rev. B 35, 8865–8868 (1987).

  5. 5.

    & Large-N expansion for frustrated quantum antiferromagnets. Phys. Rev. Lett. 66, 1773–1776 (1991).

  6. 6.

    Dirac structure, RVB, and Goldstone modes in the kagomé antiferromagnet. Phys. Rev. B 63, 014413 (2001).

  7. 7.

    & Bond and Néel order and fractionalization in ground states of easy-plane antiferromagnets in two dimensions. Phys. Rev. B 65, 220405(R) (2002).

  8. 8.

    , , , & Quantum criticality beyond the Landau–Ginzburg–Wilson paradigm. Phys. Rev. B 70, 144407 (2004).

  9. 9.

    , , & Projected wavefunction study of spin-1/2 Heisenberg model on the kagomé lattice. Phys. Rev. Lett. 98, 117205 (2007).

  10. 10.

    , , & Algebraic vortex liquid theory of a quantum antiferromagnet on the kagomé lattice. Phys. Rev. B 75, 184406 (2007).

  11. 11.

    in Handbook on Magnetic MaterialsVol. 13 (ed. Busch, K. J. H.) 423 (Elsevier Science, Amsterdam, 2001).

  12. 12.

    et al. Emergent excitations in a geometrically frustrated magnet. Nature 418, 856–858 (2002).

  13. 13.

    et al. A structurally perfect S=1/2 kagomé antiferromagnet. J. Am. Chem. Soc. 127, 13462–13463 (2005).

  14. 14.

    et al. Spin dynamics of the spin-1/2 kagomé lattice antiferromagnet ZnCu3(OH)6Cl2. Phys. Rev. Lett. 98, 107204 (2007).

  15. 15.

    et al. Ground state and excitation properties of the quantum kagomé system ZnCu3(OH)6Cl2 investigated by local probes. Preprint at <> (2006).

  16. 16.

    et al. Quantum magnetism in paratacamite family: Heading towards an ideal kagomé lattice. Phys. Rev. Lett. 98, 077204 (2007).

  17. 17.

    et al. Unconventional magnetic transitions in the mineral clinoatacamite Cu2Cl(OH)3. Phys. Rev. B 71, 052409 (2005).

  18. 18.

    et al. Coexistence of long-range order and spin fluctuation in geometrically frustrated clinoatacamite Cu2Cl(OH)3. Phys. Rev. Lett. 95, 057201 (2005).

  19. 19.

    et al. Unconventional spin fluctuations in the hexagonal antiferromagnet YMnO3. Phys. Rev. B 68, 014432 (2003).

  20. 20.

    et al. Magnetic ordering and spin dynamics in potassium jarosite: A Heisenberg kagome lattice antiferromagnet. Phys. Rev. B 67, 224435 (2003).

  21. 21.

    et al. Spin waves in the frustrated kagome lattice antiferromanget KFe3(OH)6(SO4)2. Phys. Rev. Lett. 96, 247201 (2006).

  22. 22.

    & Neutron inelastic-scattering from isolated clusters of magnetic ions. J. Magn. Magn. Mater. 14, 256–264 (1979).

  23. 23.

    et al. Isolated spin pairs and two-dimensional magnetism in SrCr9pGa12−9pO19. Phys. Rev. Lett. 76, 4424–4427 (1996).

  24. 24.

    & Magnetic susceptibility of the kagomé antiferromagnet. Phys. Rev. Lett. 98, 207204 (2007).

  25. 25.

    New candidate emerges for a quantum spin liquid. Phys. Today 60, 16–19 (2007).

  26. 26.

    et al. Electronic states and magnetic properties of edge-sharing Cu–O chains. Phys. Rev. B 57, 5326–5335 (1998).

  27. 27.

    , & Anisotropic superexchange for nearest and next-nearest coppers in chain, ladder, and lamellar cuprates. Phys. Rev. B 60, 10206–10215 (1999).

Download references

Acknowledgements

We thank D. Khomskii, S. Sachdev and M. Gingras for helpful discussions. S.-H.L. is supported by US DOC through NIST-70NANB5H1152. Activities at NIST were partially supported by NSF through DMR-0454672.

Author information

Affiliations

  1. Department of Physics, University of Virginia, Charlottesville, Virginia 22904-4714, USA

    • S.-H. Lee
  2. Department of Applied Physics, University of Fukui, Fukui 910-8507, Japan

    • H. Kikuchi
  3. NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA

    • Y. Qiu
    •  & Q. Huang
  4. Hahn–Meitner-Institut, Glienicker Straße 100, Berlin D-14109, Germany

    • B. Lake
    • , K. Habicht
    •  & K. Kiefer
  5. Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany

    • B. Lake

Authors

  1. Search for S.-H. Lee in:

  2. Search for H. Kikuchi in:

  3. Search for Y. Qiu in:

  4. Search for B. Lake in:

  5. Search for Q. Huang in:

  6. Search for K. Habicht in:

  7. Search for K. Kiefer in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to S.-H. Lee.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary figures S1-S5 and tables S1-S4

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat1986

Further reading