Tailoring properties and functionalities of metal nanoparticles through crystallinity engineering

Abstract

Metal nanoparticles (NPs) with size comparable to their electron mean free path possess unusual properties and functionalities1, serving as model systems to explore quantum and classical coupling interactions as well as building blocks of practical applications2,3,4,5,6,7,8. Although advances in strategies for synthesizing metal NPs have enabled control of size, composition and shape9,10,11,12,13, the requirement that defects are simultaneously controlled, to ensure essential perfect nanocrystallinity for physics modelling as well as device optimization, is a potentially more significant issue, but has posed substantial technological challenges. Here we report that crystallinity of monodisperse silver NPs can be well controlled by judicious choice of functional groups of molecular precursors, thus facilitating investigation of their scope for versatile applications. We demonstrate how nanoscale chemical transformation, electron–phonon interactions and nanomechanical properties are modified by nanocrystallinity. Lastly, we find that performance of NP-based molecular sensing devices can be optimized with significant improvement of figure of merit if perfect single-crystalline NPs are applied. Our approach represents a versatile synthetic route for other metal nanomaterials with unprecedented control of their structure, creating a rational pathway for understanding and manipulating nanoscale chemical and physical processes as well as technological applications of metal NPs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Controlled synthesis of silver NPs with well-defined crystallinity.
Figure 2: Chemical transformation of 10.5 nm silver SC- and MT-NPs to Ag2Se nanostructures at 45 C in o-dichlorobenzene.
Figure 3: Time-resolved measurements of 10.5 nm silver MT- and SC-NPs.
Figure 4: LSPR response of SC- and MT-NPs as molecular sensors.

References

  1. 1

    Klimov, V. I. Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties (Marcel Dekker, New York, 2003).

    Google Scholar 

  2. 2

    Collier, C. P., Saykally, R. J., Shiang, J. J., Henrichs, S. E. & Heath, J. R. Reversible tuning of silver quantum dot monolayers through the metal-insulator transition. Science 277, 1978–1981 (1997).

    CAS  Article  Google Scholar 

  3. 3

    Valden, M., Lai, X. & Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281, 1647–1650 (1998).

    CAS  Article  Google Scholar 

  4. 4

    Cao, Y. C., Jin, R. & Mirkin, C. A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536–1540 (2002).

    CAS  Article  Google Scholar 

  5. 5

    Sönnichsen, C., Reinhard, B. M., Liphardt, J. & Alivisatos, A. P. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nature Biotechnol. 23, 741–745 (2005).

    Article  Google Scholar 

  6. 6

    Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface enhanced Raman scattering. Science 275, 1102–1106 (1997).

    CAS  Article  Google Scholar 

  7. 7

    Sherry, L. J., Jin, R., Mirkin, C. A., Schatz, G. C. & Van Duyne, R. P. Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett. 6, 2060–2065 (2006).

    CAS  Article  Google Scholar 

  8. 8

    Maier, S. A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater. 2, 229–232 (2003).

    CAS  Article  Google Scholar 

  9. 9

    Zheng, N., Fan, J. & Stucky, G. D. One-step one-phase synthesis of monodisperse noble-metallic nanoparticles and their colloidal crystals. J. Am. Chem. Soc. 128, 6550–6551 (2006).

    CAS  Article  Google Scholar 

  10. 10

    Jin, R. et al. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425, 487–490 (2003).

    CAS  Article  Google Scholar 

  11. 11

    Sun, Y. & Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002).

    CAS  Article  Google Scholar 

  12. 12

    Murray, C. B., Kagan, C. R. & Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000).

    CAS  Article  Google Scholar 

  13. 13

    Sun, S., Murray, C. B., Weller, D., Folks, L. & Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000).

    CAS  Article  Google Scholar 

  14. 14

    Marks, L. D. Experimental studies of small particle structures. Rep. Prog. Phys. 57, 603–649 (1994).

    CAS  Article  Google Scholar 

  15. 15

    Hofmeister, H. in Encyclopedia of Nanoscience and Nanotechnology Vol. 3 (ed. Nalwa, H. S.) 431–452 (American Scientific, Stevenson Ranch, 2004).

    Google Scholar 

  16. 16

    Wang, Z. L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B 104, 1153–1175 (2000).

    CAS  Article  Google Scholar 

  17. 17

    Wiley, B., Herricks, T., Sun, Y. & Xia, Y. Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of single-crystal truncated cubes and tetrahedrons. Nano Lett. 4, 1733–1739 (2004).

    CAS  Article  Google Scholar 

  18. 18

    Fackler, J. R. & Liu, C. W. Product class 5: Organometallic complexes of silver. Sci. Synth. Organometallic 3, 663–690 (2004).

    CAS  Google Scholar 

  19. 19

    Son, D. H., Hughes, S. M., Yin, Y. & Alivisatos, A. P. Cation exchange reactions in ionic nanocrystals. Science 306, 1009–1012 (2004).

    CAS  Article  Google Scholar 

  20. 20

    Yin, Y. et al. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304, 711–714 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Borg, R. J. & Dienes, G. J. An Introduction to Solid State Diffusion (Academic, Boston, 1988).

    Google Scholar 

  22. 22

    Arbouet, A. et al. Electron–phonon scattering in metal clusters. Phys. Rev. Lett. 90, 177401 (2003).

    CAS  Article  Google Scholar 

  23. 23

    Link, S. & El-Sayed, M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 8410–8426 (1999).

  24. 24

    Voisin, C., Del Fatti, N., Christofilos, D. & Vallée, F. Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles. J. Phys. Chem. B 2264–2280 (2001).

  25. 25

    Hartland, G. V. Coherent excitation of vibrational modes in metallic nanoparticles. Annu. Rev. Phys. Chem. 57, 403–430 (2006).

    CAS  Article  Google Scholar 

  26. 26

    Zhu, T., Li, J., Samanta, A., Kim, H. G. & Suresh, S. Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc. Natl Acad. Sci. 104, 3031–3036 (2007).

    CAS  Article  Google Scholar 

  27. 27

    Krivtsov, A. M. & Morozov, N. F. On mechanical characteristics of nanocrystals. Phys. Solid State 44, 2260–2265 (2002).

    CAS  Article  Google Scholar 

  28. 28

    Moriarty, J. A., Vitek, V., Bulatov, V. V. & Yip, S. Atomistic simulations of dislocations and defects. J. Comp. Aid. Maters. Des. 9, 99–132 (2002).

    CAS  Article  Google Scholar 

  29. 29

    Malinsky, M. D., Kelly, K. L., Schatz, G. C. & Van Duyne, R. P. Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J. Am. Chem. Soc. 123, 1471–1482 (2001).

    CAS  Article  Google Scholar 

  30. 30

    Grimvall, G. The Electron–Phonon Interaction in Metals (North-Holland, New York, 1981).

    Google Scholar 

Download references

Acknowledgements

We thank Tiejun (Tim) Zhang for technical help with TEM characterizations and Maryland NanoCenter for the electron-microscopy facility. Supported by NSF CAREER grant (DMR-0547194), ONR YIP grant (N000140710787), Beckman YIP grant (0609259093), NSF MRSEC seed fund and the University of Maryland start-up initiative.

Author information

Affiliations

Authors

Contributions

Y.T. carried out all material synthesis and characterization. M.O. directed the research. Both contributed to measurements, data analysis and interpretation.

Corresponding author

Correspondence to Min Ouyang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information, figures and tables (PDF 1640 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tang, Y., Ouyang, M. Tailoring properties and functionalities of metal nanoparticles through crystallinity engineering. Nature Mater 6, 754–759 (2007). https://doi.org/10.1038/nmat1982

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing