Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Imbibition by polygonal spreading on microdecorated surfaces

Abstract

Micropatterned surfaces have been studied extensively as model systems to understand influences of topographic1 or chemical2,3 heterogeneities on wetting phenomena. Such surfaces yield specific wetting or hydrodynamic effects, for example, ultrahydrophobic surfaces4, ‘fakir’ droplets5, tunable electrowetting6, slip in the presence of surface heterogeneities7,8 and so on. In addition, chemical patterns allow control of the locus, size and shape of droplets by pinning the contact lines at predetermined locations9,10. Applications include the design of ‘self-cleaning’ surfaces11 and hydrophilic spots to automate the deposition of probes on DNA chips12. Here, we discuss wetting on topographically patterned but chemically homogeneous surfaces and demonstrate mechanisms of shape selection during imbibition of the texture. We obtain different deterministic final shapes of the spreading droplets, including octagons, squares, hexagons and circles. The shape selection depends on the topographic features and the liquid through its equilibrium contact angle. Considerations of the dynamics provide a ‘shape’ diagram that summarizes our observations and suggest rules for a designer’s tool box.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Mostly-wetting liquid droplets spreading over chemically homogeneous microtextured substrates form polygonal shapes.
Figure 2: Final shapes for droplets of different liquids released on the same surface.
Figure 3: Dynamics of spreading provide a ‘shape’ diagram.
Figure 4: The design of the microtexture allows for the control of the locus, size and shape of spreading droplets.

References

  1. Quéré, D. Non-sticking drops. Rep. Prog. Phys. 68, 2495–2532 (2005).

    Article  Google Scholar 

  2. Cubaud, T. & Fermigier, M. Faceted drops on heterogeneous surfaces. Europhys. Lett. 55, 239–245 (2001).

    Article  CAS  Google Scholar 

  3. Cubaud, T., Fermigier, M. & Jenffer, P. Spreading of large drops on patterned surfaces. Oil Gas Sci. Technol. Rev. IFP 56, 23–31 (2001).

    Article  Google Scholar 

  4. Onda, T., Shibuichi, N., Satoh, N. & Tsuji, K. Super-water-repellent fractal surfaces. Langmuir 12, 2125–2127 (1996).

    Article  CAS  Google Scholar 

  5. Quéré, D. Fakir droplets. Nature Mater. 1, 14–15 (2002).

    Article  Google Scholar 

  6. Krupenkin, T. N., Taylor, J. A., Schneider, T. M. & Yang, S. From rolling ball to complete wetting: The dynamic tuning of liquids on nanostructured surfaces. Langmuir 20, 3824–3827 (2004).

    Article  CAS  Google Scholar 

  7. Cottin-Bizonne, C., Barrat, J. L., Bocquet, L. & Charlaix, E. Low-friction flows of liquid at nanopatterned interfaces. Nature Mater. 2, 237–240 (2003).

    Article  CAS  Google Scholar 

  8. Lauga, E. & Stone, H. A. Effective slip in pressure-driven Stokes flow. J. Fluid Mech. 489, 55–77 (2003).

    Article  Google Scholar 

  9. Abbott, N. L., Folkers, J. P. & Whitesides, G. M. Manipulation of the wettability of surfaces on the 0.1 to 1-micrometer scale through micromachining and molecular self-assembly. Science 257, 1380–1382 (1992).

    Article  CAS  Google Scholar 

  10. Gau, H., Herminghaus, S., Lenz, P. & Lipowski, R. Liquid morphologies on structured surfaces: From microchannels to microchips. Science 283, 46–49 (1999).

    Article  CAS  Google Scholar 

  11. Barthlott, W. & Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8 (1997).

    Article  CAS  Google Scholar 

  12. Blanchard, A. P., Kaiser, R. J. & Hood, L. E. High-density oligonucleotide arrays. Biosens. Bioelectron. 11, 687–690 (1996).

    Article  CAS  Google Scholar 

  13. de Gennes, P. G. Wetting: Statics and dynamics. Rev. Mod. Phys. 57, 827–863 (1985).

    Article  CAS  Google Scholar 

  14. McHale, G., Shirtcliffe, N. J., Aqil, S., Perry, C. C. & Newton, M. I. Topography driven spreading. Phys. Rev. Lett. 93, 036102 (2004).

    Article  CAS  Google Scholar 

  15. Bico, J., Tordeux, C. & Quéré, D. Rough wetting. Europhys. Lett. 55, 214–220 (2001).

    Article  CAS  Google Scholar 

  16. Bico, J. Mécanismes d’imprégnations: Surfaces texturées, bigouttes, poreux. Thesis, Univ. de Paris VI (2000).

  17. Lenormand, R. Liquids in porous media. J. Phys. Condens. Matter 2, SA79–SA88 (1990).

    Article  Google Scholar 

  18. Washburn, E. W. The dynamics of capillary flow. Phys. Rev. 17, 273–283 (1921).

    Article  Google Scholar 

  19. McDonald, J. C. & Whitesides, G. M. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35, 491–499 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank D. Lohse, M. Fermigier, D. Quéré and M. Sbragaglia for helpful conversations. We thank the Harvard MRSEC (DMR-0213805) for support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard A. Stone.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary movie S1 (MOV 1936 kb)

Supplementary Information

Supplementary movie S2 (MOV 1181 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Courbin, L., Denieul, E., Dressaire, E. et al. Imbibition by polygonal spreading on microdecorated surfaces. Nature Mater 6, 661–664 (2007). https://doi.org/10.1038/nmat1978

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1978

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing