Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-resolution electrohydrodynamic jet printing

Abstract

Efforts to adapt and extend graphic arts printing techniques for demanding device applications in electronics, biotechnology and microelectromechanical systems have grown rapidly in recent years. Here, we describe the use of electrohydrodynamically induced fluid flows through fine microcapillary nozzles for jet printing of patterns and functional devices with submicrometre resolution. Key aspects of the physics of this approach, which has some features in common with related but comparatively low-resolution techniques for graphic arts, are revealed through direct high-speed imaging of the droplet formation processes. Printing of complex patterns of inks, ranging from insulating and conducting polymers, to solution suspensions of silicon nanoparticles and rods, to single-walled carbon nanotubes, using integrated computer-controlled printer systems illustrates some of the capabilities. High-resolution printed metal interconnects, electrodes and probing pads for representative circuit patterns and functional transistors with critical dimensions as small as 1 μm demonstrate potential applications in printed electronics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nozzle structures and schematic diagrams of a high-resolution e-jet printer.
Figure 2: Time-lapse images of the pulsating liquid meniscus in one cycle at V/H=3.5 V μm−1.
Figure 3: Optical micrographs and SEM images of various images formed with different inks.
Figure 4: High-resolution e-jet printing with printed feature sizes in the range from 240 nm to 5 μm.
Figure 5: Patterns of electrode structures for a ring oscillator and isolated transistors formed by e-jet printing of a photocurable polyurethane ink that acts as an etch resist for a uniform underlying layer of metal (Au/Cr).
Figure 6: Fabrication of perfectly aligned SWNT-TFTs on a plastic substrate with e-jet printing for the critical features, that is, the source and drain electrodes.

Similar content being viewed by others

References

  1. Forrest, S. R. The path to ubiquitous and low-cost organic electronic applications on plastics. Nature 428, 911–918 (2004).

    Article  CAS  Google Scholar 

  2. Gans, B. J., Duineveld, P. C. & Schubert, U. S. Inkjet printing of polymers: State of the art and future development. Adv. Mater. 16, 203–213 (2004).

    Article  Google Scholar 

  3. Parashkov, R., Becker, E., Riedl, T., Johannes, H. & Kowalsky, W. Large area electronics using printing method. Proc. IEEE 93, 1321–1329 (2005).

    Article  CAS  Google Scholar 

  4. Chang, P. C. et al. Film morphology and thin film transistor performance of solution-processed oligothiophenes. Chem. Mater. 16, 4783–4789 (2004).

    Article  CAS  Google Scholar 

  5. Sirringhaus, H. et al. High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000).

    Article  CAS  Google Scholar 

  6. Shimoda, T. et al. Solution-processed silicon films and transistors. Nature 440, 783–786 (2006).

    Article  CAS  Google Scholar 

  7. Burns, S. E., Cain, P., Mills, J., Wang, J. & Sirringhaus, H. Inkjet printing of polymer thin-film transistor circuits. Mater. Res. Soc. Bull. 28, 829–834 (2003).

    Article  CAS  Google Scholar 

  8. Wong, W. S., Ready, S. E., Lu, J. P. & Street, R. A. Hydrogenated amorphous silicon thin-film transistor arrays fabricated by digital lithography. IEEE Electron Device Lett. 24, 577–579 (2003).

    Article  CAS  Google Scholar 

  9. Szczech, J. B., Megaridis, C. M., Gamota, D. R. & Zhang, J. Fine-line conductor manufacturing using drop-on-demand PZT printing technology. IEEE Trans. Electron. Packag. Manufactur. 25, 26–33 (2002).

    Article  CAS  Google Scholar 

  10. Shimoda, T., Morii, K., Seki, S. & Kiguchi, H. Inkjet printing of light-emitting polymer displays. Mater. Res. Soc. Bull. 28, 821–827 (2003).

    Article  CAS  Google Scholar 

  11. Chang, S. C. et al. Multicolor organic light-emitting diodes processed by hybrid inkjet printing. Adv. Mater. 11, 734–737 (1999).

    Article  CAS  Google Scholar 

  12. Hebner, T. R. & Sturm, J. C. Local tuning of organic light-emitting diode color by dye droplet application. Appl. Phys. Lett. 73, 1775–1777 (1998).

    Article  CAS  Google Scholar 

  13. Lemmo, A. V., Rose, D. J. & Tisone, T. C. Inkjet dispensing technology: Application in drug discovery. Curr. Opin. Biotechnol. 9, 615–617 (1998).

    Article  CAS  Google Scholar 

  14. Heller, M. J. DNA microarray technology: Devices, systems, and applications. Annu. Rev. Biomed. Eng. 4, 129–153 (2002).

    Article  CAS  Google Scholar 

  15. Nallani, A., Chen, T., Lee, J. B., Hayes, D. & Wallace, D. Wafer level optoelectronic device packaging using MEMS. Proc. SPIE: Smart Sensors Actuators MEMS II 5836, 116–127 (2005).

    Article  CAS  Google Scholar 

  16. Bietsch, A., Zhang, J., Hegner, M., Lang, H. P. & Gerber, C. Rapid functionalization of cantilever array sensors by inkjet printing. Nanotechnology 15, 873–880 (2004).

    Article  CAS  Google Scholar 

  17. Hiller, J., Mendelsohn, J. D. & Rubner, M. F. Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers. Nature Mater. 1, 59–63 (2002).

    Article  CAS  Google Scholar 

  18. Ling, M. M. & Bao, Z. Thin film deposition, patterning, and printing in organic thin film transistors. Chem. Mater. 16, 4824–4840 (2004).

    Article  CAS  Google Scholar 

  19. Calvert, P. Inkjet printing for materials and devices. Chem. Mater. 13, 3299–3305 (2001).

    Article  CAS  Google Scholar 

  20. Sanaur, S., Whalley, A., Alameddine, B., Carnes, M. & Nuckolls, C. Jet-printed electrodes and semiconducting oligomers for elaboration of organic thin-film transistors. Org. Electron. 7, 423–427 (2006).

    Article  CAS  Google Scholar 

  21. Cheng, K. et al. Inkjet printing, self-assembled polyelectrolytes, and electroless plating: Low cost fabrication of circuits on a flexible substrate at room temperature. Macromol. Rapid Commun. 26, 247–264 (2005).

    Article  CAS  Google Scholar 

  22. Creagh, L. T. & McDonald, M. Design and performance of inkjet printheads for non graphic arts applications. Mater. Res. Soc. Bull. 28, 807 (2003).

    Article  Google Scholar 

  23. Wang, J. Z., Gu, J., Zenhausern, F. & Sirringhaus, H. Low-cost fabrication of submicron all polymer field effect transistors. Appl. Phys. Lett. 88, 133502 (2006).

    Article  Google Scholar 

  24. Stutzmann, N., Friend, R. H. & Sirringhaus, H. Self-aligned, vertical channel, polymer field effect transistors. Science 299, 1881–1885 (2003).

    Article  CAS  Google Scholar 

  25. Sele, C. W., Werne, T., Friend, R. H. & Sirringhaus, H. Lithography-free, self-aligned inkjet printing with sub-hundred nanometer resolution. Adv. Mater. 17, 997–1001 (2005).

    Article  CAS  Google Scholar 

  26. Mills, R. S. Recent Progress in Ink Jet Technologies II 286–290 (Society for Imaging Science and Technology, Washington, 1999).

    Google Scholar 

  27. Nakao, H., Murakami, T., Hirahara, S., Nagato, H. & Nomura, Y. IS&Ts NIP15: 1999 International Conference on Digital Printing Technologies 319–322 (Society for Imaging Science and Technology, Washington, 1999).

    Google Scholar 

  28. Choi, D. H. & Lee, F. C. Proc. of IS&T’s Ninth International Congress on Advances in Non-Impact Printing Technologies. October 4–8, Yokohama, Japan (Society for Imaging Science and Technology, Washington, 1993).

    Google Scholar 

  29. Kawamoto, H., Umezu, S. & Koizumi, R. Fundamental investigation on electrostatic ink jet phenomena in pin-to-plate discharge system. J. Imaging Sci. Technol. 49, 19–27 (2005).

    CAS  Google Scholar 

  30. Taylor, G. Disintegration of water droplets in an electric field. Proc. R. Soc. Lond. A 280, 383–397 (1964).

    Article  Google Scholar 

  31. Jayasinghe, S. N. & Edirisinghe, M. J. Electric-field driven jetting from dielectric liquids. Appl. Phys. Lett. 85, 4243 (2004).

    Article  CAS  Google Scholar 

  32. Marginean, I., Parvin, L., Heffernan, L. & Vertes, A. Flexing the electrified meniscus: The birth of a jet in electrosprays. Anal. Chem. 76, 4202–4207 (2004).

    Article  CAS  Google Scholar 

  33. Chen, C. H., Saville, D. A. & Aksay, I. A. Scaling law for pulsed electrohydrodynamic drop formation. Appl. Phys. Lett. 89, 124103 (2006).

    Article  Google Scholar 

  34. Hayati, I., Bailey, A. I. & Tadros, T. F. Investigations into mechanisms of electrohydrodynamic spraying of liquids. J. Colloid Interface Sci. 117, 205–221 (1987).

    Article  CAS  Google Scholar 

  35. Wickware, P. & Smaglik, P. Mass spectroscopy: Mix and match. Nature 413, 869 (2001).

    CAS  Google Scholar 

  36. Salata, O. V. Tools of nanotechnology: Electrospray. Curr. Nanosci. 1, 25–33 (2005).

    Article  CAS  Google Scholar 

  37. Smith, A. et al. Observation of strong direct-like oscillator strength in the photoluminescence of Si nanoparticles. Phys. Rev. B 72, 205307 (2005).

    Article  Google Scholar 

  38. Menard, E., Lee, K. J., Khang, D. Y., Nuzzo, R. G. & Rogers, J. A. A printable form of silicon for high performance thin film transistors on plastic substrates. Appl. Phys. Lett. 84, 5398 (2004).

    Article  CAS  Google Scholar 

  39. Kocabas, C., Shim, M. & Rogers, J. A. Spatially selective guided growth of high-coverage arrays and random networks of single-walled carbon nanotubes and their integration into electronic devices. J. Am. Chem. Soc. 128, 4540–4541 (2006).

    Article  CAS  Google Scholar 

  40. Park, J. U. et al. In situ deposition and patterning of single walled carbon nanotubes by laminar flow and controlled flocculation in microfluidic channels. Angew. Chem. Int. Edn 45, 581–585 (2006).

    Article  CAS  Google Scholar 

  41. Kang, S. J. et al. High performance electronics using dense, perfectly aligned arrays of single walled carbon nanotubes. Nature Nanotechnol. 2, 230–236 (2007).

    Article  CAS  Google Scholar 

  42. Chen, Z., Appenzeller, J., Knoch, J., Lin, Y. M. & Avouris, P. The role of metal-nanotube contact in the performance of carbon nanotube field effect transistors. Nano Lett. 5, 1497–1502 (2005).

    Article  CAS  Google Scholar 

  43. Kim, W. et al. Electrical contacts to carbon nanotubes down to 1 nm in diameter. Appl. Phys. Lett. 87, 173101 (2005).

    Article  Google Scholar 

  44. Lee, K. J. et al. A printable form of single-crystalline gallium nitride for flexible optoelectronic systems. Small 1, 1164–1168 (2005).

    Article  CAS  Google Scholar 

  45. Sheats, J. R. Manufacturing and commercialization issues in organic electronics. J. Mater. Res. 19, 1974–1989 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank L. Jang and M. Nayfeh for supplying Si nanoparticle solutions, R. Shepherd and J. Lewis for the use of their high-speed camera, and R. Lin for assistance with setting initial experimental conditions. In addition, the authors acknowledge the Center for Nanoscale Chemical Electrical Mechanical Manufacturing Systems in the University of Illinois, which is funded by the National Science Foundation under grant DMI-0328162, and the Center for Microanalysis of Materials in University of Illinois, which is partially supported by the US Department of Energy under grant DEFG02-91-ER45439.

Author information

Authors and Affiliations

Authors

Contributions

J.-U.P. and J.A.R. designed the experiments and wrote the paper. J.-U.P. carried out the nozzle fabrication, ink design, printing and characterization. S.J.K. and J.-U.P. contributed to device fabrication. K.B., K.A., D.K.M., A.G.A. and P.M.F. designed the printing machine and contributed to project planning. J.G.G. was responsible for hydrodynamics analysis and project planning. C.Y.L. and M.S.S. synthesized SWNT solutions. M.H. developed the software algorithm and measured contact angles.

Corresponding author

Correspondence to John A. Rogers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information, table S1 and figures S1-S3 (PDF 223 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, JU., Hardy, M., Kang, S. et al. High-resolution electrohydrodynamic jet printing. Nature Mater 6, 782–789 (2007). https://doi.org/10.1038/nmat1974

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1974

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing