Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electronic control of Ca2+ signalling in neuronal cells using an organic electronic ion pump

Abstract

Cells and tissues use finely regulated ion fluxes for their intra- and intercellular communication. Technologies providing spatial and temporal control for studies of such fluxes are however, limited. We have developed an electrophoretic ion pump made of poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulphonate) (PEDOT:PSS) to mediate electronic control of the ion homeostasis in neurons. Ion delivery from a source reservoir to a receiving electrolyte via a PEDOT:PSS thin-film channel was achieved by electronic addressing. Ions are delivered in high quantities at an associated on/off ratio exceeding 300. This induces physiological signalling events that can be recorded at the single-cell level. Furthermore, miniaturization of the device to a 50-μm-wide channel allows for stimulation of individual cells. As this technology platform allows for electronic control of ion signalling in individual cells with proper spatial and temporal resolution, it will be useful in further studies of communication in biological systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biocompatibility of PEDOT:PSS.
Figure 2: The ion pump.
Figure 3: K+ transport.
Figure 4: Ca2+ transport.
Figure 5: Microscopy recordings of electronically induced ion flux in electrolyte and cells.

Similar content being viewed by others

References

  1. Andersson, P. et al. Active matrix displays based on all-organic electrochemical smart pixels printed on paper. Adv. Mater. 14, 1460–1464 (2002).

    Article  CAS  Google Scholar 

  2. Pei, Q. B., Zuccarello, G., Ahlskog, M. & Inganäs, O. Electrochromic and highly stable poly(3,4-ethylenedioxythiophene) switches between opaque blue-black and transparent sky blue. Polymer 35, 1347–1351 (1994).

    Article  CAS  Google Scholar 

  3. Nilsson, D., Kugler, T., Svensson, P.-O. & Berggren, M. An all-organic sensor-transistor based on a novel electrochemical transducer concept printed electrochemical sensors on paper. Sensors Actuators B 86, 193–197 (2002).

    Article  CAS  Google Scholar 

  4. Zhu, Z. T. et al. A simple poly(3,4-ethylene dioxythiophene)/poly(styrene sulfonic acid) transistor for glucose sensing at neutral pH. Chem. Commun. 13, 1556–1557 (2004).

    Article  Google Scholar 

  5. Mabeck, J. & Malliaras, G. Chemical and biological sensors based on organic thin-film transistors. Anal. Bioanal. Chem. 384, 343–353 (2006).

    Article  CAS  Google Scholar 

  6. Jager, E. W. H., Smela, E. & Inganas, O. Microfabricating conjugated polymer actuators. Science 290, 1540–1545 (2000).

    Article  CAS  Google Scholar 

  7. Smela, E., Inganas, O. & Lundstrom, I. Controlled folding of micrometer-size structures. Science 268, 1735–1738 (1995).

    Article  CAS  Google Scholar 

  8. Isaksson, J., Tengstedt, C., Fahlman, M., Robinson, N. & Berggren, M. A solid-state organic electronic wettability switch. Adv. Mater. 16, 316–320 (2004).

    Article  CAS  Google Scholar 

  9. Abidian, M. R., Kim, D. H. & Martin, D. C. Conducting-polymer nanotubes for controlled drug release. Adv. Mater. 18, 405–409 (2006).

    Article  CAS  Google Scholar 

  10. George, P. M. et al. Electrically controlled drug delivery from biotin-doped conductive polypyrrole. Adv. Mater. 18, 577–581 (2006).

    Article  CAS  Google Scholar 

  11. Karlsson, R., Karlsson, A. & Orwar, O. A nanofluidic switching device. J. Am. Chem. Soc. 125, 8442–8443 (2003).

    Article  CAS  Google Scholar 

  12. Xu, H., Wang, C., Wang, C. L., Zoval, J. & Madou, M. Polymer actuator valves toward controlled drug delivery application. Biosensors Bioelectron. 21, 2094–2099 (2006).

    Article  CAS  Google Scholar 

  13. Kontturi, K., Murtomaki, L., Pentti, P. & Sundholm, G. Preparation and properties of a pyrrole-based ion-gate membrane as studied by the EQCM. Synth. Met. 92, 179–185 (1998).

    Article  CAS  Google Scholar 

  14. Miller, L. L. Electrochemically controlled release of drugs and other chemicals. Reactive Polymers, Ion Exchangers, Sorbents 6, 341 (1986).

    Google Scholar 

  15. Lira, L. M. & de Torresi, S. I. C. Conducting polymer-hydrogel composites for electrochemical release devices: Synthesis and characterization of semi-interpenetrating polyaniline-polyacrylamide networks. Electrochem. Commun. 7, 717–723 (2005).

    Article  CAS  Google Scholar 

  16. Yates, B. J. et al. Electrochemical control of solid phase micro-extraction: Conducting polymer coated film material applicable for preconcentration/analysis of neutral species. Talanta 58, 739–745 (2002).

    Article  CAS  Google Scholar 

  17. Wong, J. Y., Langer, R. & Ingber, D. E. Electrically conducting polymers can noninvasively control the shape and growth of mammalian-cells. Proc. Natl Acad. Sci. USA 91, 3201–3204 (1994).

    Article  CAS  Google Scholar 

  18. Nyberg, T., Inganäs, O. & Jerregård, H. Polymer hydrogel microelectrodes for neural communication. Biomed. Microdev. 4, 43–52 (2002).

    Article  CAS  Google Scholar 

  19. Chung, B. G., Lin, F. & Jeon, N. L. A microfluidic multi-injector for gradient generation. Lab Chip 6, 764–768 (2006).

    Article  CAS  Google Scholar 

  20. Irimia, D. et al. Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients. Lab Chip 6, 191–198 (2006).

    Article  CAS  Google Scholar 

  21. Berridge, M. J. Calcium oscillations. J. Biol. Chem. 265, 9583–9586 (1990).

    CAS  Google Scholar 

  22. Berridge, M. J., Bootman, M. D. & Lipp, P. Molecular biology: Calcium—a life and death signal. Nature 395, 645–648 (1998).

    Article  CAS  Google Scholar 

  23. Berridge, M. J., Bootman, M. D. & Roderick, H. L. Calcium signalling: Dynamics, homeostasis and remodelling. Nature Rev. Mol. Cell Biol. 4, 517–529 (2003).

    Article  CAS  Google Scholar 

  24. George, P. M. et al. Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics. Biomaterials 26, 3511–3519 (2005).

    Article  CAS  Google Scholar 

  25. Wang, X. et al. Evaluation of biocompatibility of polypyrrole in vitro and in vivo. J. Biomed. Mater. Res. A 68, 411–422 (2004).

    Article  Google Scholar 

  26. Cui, X. & Martin, D. C. Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays. Sensors Actuators B 89, 92–102 (2003).

    Article  CAS  Google Scholar 

  27. Peyrl, A., Krapfenbauer, K., Slavc, I., Strobel, T. & Lubec, G. Proteomic characterization of the human cortical neuronal cell line HCN-2. J. Chem. Neuroanat. 26, 171–178 (2003).

    Article  CAS  Google Scholar 

  28. Ronnett, G. V., Hester, L. D., Nye, J. S. & Snyder, S. H. Human cerebral cortical cell lines from patients with unilateral megalencephaly and Rasmussen’s encephalitis. Neuroscience 63, 1081–1099 (1994).

    Article  CAS  Google Scholar 

  29. Bobacka, J., Lewenstam, A. & Ivaska, A. Electrochemical impedance spectroscopy of oxidized poly(3,4-ethylenedioxythiophene) film electrodes in aqueous solutions. J. Electroanal. Chem. 489, 17–27 (2000).

    Article  CAS  Google Scholar 

  30. Vázquez, M., Danielsson, P., Bobacka, J., Lewenstam, A. & Ivaska, A. Solution-cast films of poly(3,4-ethylenedioxythiophene) as ion-to-electron transducers in all-solid-state ion-selective electrodes. Sensors Actuators B 97, 182–189 (2004).

    Article  Google Scholar 

  31. Lisowska-Oleksiak, A., Kazubowska, K. & Kupniewska, A. Ionic transport of Li+ in polymer films consisting of poly(3,4-ethylenedioxythiophene) and poly(4-styrenesulphonate). J. Electroanal. Chem. 501, 54–61 (2001).

    Article  CAS  Google Scholar 

  32. Lisowska-Oleksiak, A. & Kupniewska, A. Transport of alkali metal cations in poly(3,4-ethylenethiophene) films. Solid State Ion. 157, 241–248 (2003).

    Article  CAS  Google Scholar 

  33. Wang, X., Shapiro, B. & Smela, E. Visualizing ion currents in conjugated polymers. Adv. Mater. 16, 1605–1609 (2004).

    Article  CAS  Google Scholar 

  34. Krische, B. & Zagorska, M. Overoxidation in conducting polymers. Synth. Met. 28, C257–C262 (1989).

    Article  CAS  Google Scholar 

  35. Tehrani, P. et al. Patterning polythiophene films using electrochemical over-oxidation. Smart Mater. Struct. 14, 21–25 (2005).

    Article  Google Scholar 

  36. Zotti, G. et al. Electrochemical and XPS studies toward the role of monomeric and polymeric sulfonate counterions in the synthesis, composition, and properties of poly(3,4-ethylenedioxythiophene). Macromolecules 36, 3337–3344 (2003).

    Article  CAS  Google Scholar 

  37. Ghosh, S., Rasmusson, J. & Inganas, O. Supramolecular self-assembly for enhanced conductivity in conjugated polymer blends: Ionic crosslinking in blends of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) and poly(vinylpyrrolidone). Adv. Mater. 10, 1097–1099 (1998).

    Article  CAS  Google Scholar 

  38. Groenendaal, B. L., Jonas, F., Freitag, D., Pielartzik, H. & Reynolds, J. R. Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future. Adv. Mater. 12, 481–494 (2000).

    Article  CAS  Google Scholar 

  39. Bootman, M. D., Lipp, P. & Berridge, M. J. The organisation and functions of local Ca(2+) signals. J. Cell Sci. 114, 2213–2222 (2001).

    CAS  Google Scholar 

  40. Eckert, R. & Ewald, D. Residual calcium ions depress activation of calcium-dependent current. Science 216, 730–733 (1982).

    Article  CAS  Google Scholar 

  41. Flemming, R., Xu, S. Z. & Beech, D. J. Pharmacological profile of store-operated channels in cerebral arteriolar smooth muscle cells. British J. Pharmacol. 139, 955–965 (2003).

    Article  CAS  Google Scholar 

  42. Miller, R. J. Multiple calcium channels and neuronal function. Science 235, 46–52 (1987).

    Article  CAS  Google Scholar 

  43. Greczynski, G. et al. Photoelectron spectroscopy of thin films of PEDOT-PSS conjugated polymer blend: A mini-review and some new results. J. Electron Spectrosc. Relat. Phenom. 121, 1–17 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Sävenhed, Linköping University, for valuable help with the AAS. The project is funded by the Swedish Foundation for Strategic Research (SSF) as part of the ‘Bio-X program’ (ARD and MB) and the ‘Strategic Research Centre in Organic BioElectronics’ (OBOE) (MB and ARD). The Organic Electronics group at Linköping University in Norrköping is a member of the COE@COIN project, also funded by the SSF.

Author information

Authors and Affiliations

Authors

Contributions

J.I., D.N. and N.D.R. were responsible for design, manufacturing and characterization of the device. P.K. carried out all cell experiments. M.B. and A.R.-D. were responsible for project planning and preparation of the manuscript.

Corresponding authors

Correspondence to Joakim Isaksson, Peter Kjäll or Magnus Berggren.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figure S1 (PDF 105 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaksson, J., Kjäll, P., Nilsson, D. et al. Electronic control of Ca2+ signalling in neuronal cells using an organic electronic ion pump. Nature Mater 6, 673–679 (2007). https://doi.org/10.1038/nmat1963

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1963

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing