Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrochemically assisted self-assembly of mesoporous silica thin films

Abstract

Supported mesostructured thin films are of major importance for applications in optical, electrochemical and sensing devices. However, good performance is restricted to mesostructured phases ensuring good accessibility from the film surface, which would be straightforward with cylindrical pores oriented normal to the underlying support, but this remains challenging. Here, we demonstrate that electrochemistry is likely to induce self-assembly of surfactant-templated (organo)silica thin films on various conducting supports, homogeneously over wide areas. The method involves the application of a suitable cathodic potential to an electrode immersed in a surfactant-containing hydrolysed sol solution to generate the hydroxyl ions that are necessary to catalyse polycondensation of the precursors and self-assembly of hexagonally packed one-dimensional channels that grow perpendicularly to the electrode surface. The method is compatible with controlled and localized deposition on heterogeneous supports, opening the way to electrochemically driven nanolithography for designing complex patterns of widely accessible mesostructured materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TEM images of the electrodeposited surfactant-templated mesoporous silica films.
Figure 2: TEM images of a surfactant-templated mesoporous silica film electrodeposited on ITO.
Figure 3: Electrochemical monitoring of the permeability properties of the mesostructured films.
Figure 4: In situ EQCM characterization of the electrodeposition process and SEM examination of the resulting films.
Figure 5: Effect of deposition time on the film thickness.

Similar content being viewed by others

References

  1. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992).

    Article  CAS  Google Scholar 

  2. Braun, P. V. in Nanocomposite Science and Technology (eds Ajayan, P. M., Schadler, L. S. & Braun, P. V.) 155–214 (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003).

    Book  Google Scholar 

  3. Sanchez, C., Julian, B., Belleville, P. & Popall, M. Applications of hybrid organic-inorganic nanocomposites. J. Mater. Chem. 15, 3559–3592 (2005).

    Article  CAS  Google Scholar 

  4. Scott, B. J., Wirnsberger, G. & Stucky, G. D. Mesoporous and mesostructured materials for optical applications. Chem. Mater. 13, 3140–3150 (2001).

    Article  CAS  Google Scholar 

  5. Hartmann, M. Ordered mesoporous materials for bioadsorption and biocatalysis. Chem. Mater. 17, 4577–4593 (2005).

    Article  CAS  Google Scholar 

  6. Hoffmann, F., Cornelius, M., Morell, J. & Froeba, M. Silica-based mesoporous organic-inorganic hybrid materials. Angew. Chem. Int. Edn 45, 3216–3251 (2006).

    Article  CAS  Google Scholar 

  7. Ogawa, M. Mesoporous silica films by supramolecular templating approach. Curr. Top. Colloid Interface Sci. 4, 209–217 (2001).

    CAS  Google Scholar 

  8. Nicole, L., Boissiere, C., Grosso, D., Quach, A. & Sanchez, C. Mesostructured hybrid organic-inorganic thin films. J. Mater. Chem. 15, 3598–3627 (2005).

    Article  CAS  Google Scholar 

  9. Chao, K.-J., Liu, P.-H. & Huang, K.-Y. Thin films of mesoporous silica: Characterization and applications. C. R. Chim. 8, 727–739 (2005).

    Article  CAS  Google Scholar 

  10. Yang, H., Coombs, N., Sokolov, I. & Ozin, G. A. Free-standing and oriented mesoporous silica films grown at the air–water interface. Nature 381, 589–592 (1996).

    Article  CAS  Google Scholar 

  11. Schacht, S., Huo, Q., Voigt-Martin, I. G., Stucky, G. D. & Schuth, F. Oil-water interface templating of mesoporous macroscale structures. Science 273, 768–771 (1996).

    Article  CAS  Google Scholar 

  12. Yang, H., Kuperman, A., Coombs, N., Mamiche-Afara, S. & Ozin, G. A. Synthesis of oriented films of mesoporous silica on mica. Nature 379, 703–705 (1996).

    Article  CAS  Google Scholar 

  13. Lu, Y. et al. Continuous formation of supported cubic and hexagonal mesoporous films by sol–gel dip-coating. Nature 389, 364–368 (1997).

    Article  CAS  Google Scholar 

  14. Brinker, C. J., Lu, Y., Sellinger, A. & Fan, H. Evaporation-induced self-assembly. Nanostructures made easy. Adv. Mater. 11, 579–585 (1999).

    Article  CAS  Google Scholar 

  15. Grosso, D. et al. Fundamentals of mesostructuring through evaporation-induced self-assembly. Adv. Mater. 14, 309–322 (2004).

    CAS  Google Scholar 

  16. Soler-Illia, G. J. A. A. & Innocenzi, P. Mesoporous hybrid thin films: The physics and chemistry beneath. Chem. Eur. J. 12, 4478–4494 (2006).

    Article  CAS  Google Scholar 

  17. Brinker, C. J. & Dunphy, D. R. Morphological control of surfactant-templated metal oxide films. Curr. Opin. Colloid Interface Sci. 11, 126–132 (2006).

    Article  CAS  Google Scholar 

  18. Yang, H., Coombs, N. & Ozin, G. A. Thickness control and defects in oriented mesoporous silica films. J. Mater. Chem. 8, 1205–1411 (1998).

    Article  CAS  Google Scholar 

  19. Song, C. & Villemure, G. Electrode modification with spin-coated films of mesoporous molecular sieve silicas. Micropor. Mesopor. Mater. 44–45, 679–689 (2001).

    Article  Google Scholar 

  20. Fan, H. et al. Rapid prototyping of patterned functional nanostructures. Nature 405, 56–60 (2000).

    Article  CAS  Google Scholar 

  21. Lu, Q., Gao, F., Komarneni, S. & Mallouk, T. E. Ordered SBA-15 nanorod arrays inside a porous alumina membrane. J. Am. Chem. Soc. 126, 8650–8651 (2004).

    Article  CAS  Google Scholar 

  22. Yamaguchi, A. et al. Self-assembly of a silica-surfactant nanocomposite in a porous alumina membrane. Nature Mater. 3, 337–341 (2004).

    Article  CAS  Google Scholar 

  23. Koganti, V. R. & Rankin, S. E. Synthesis of surfactant-templated silica films with orthogonally aligned hexagonal mesophase. J. Phys. Chem. B 109, 3279–3283 (2005).

    Article  CAS  Google Scholar 

  24. Freer, E. M. et al. Oriented mesoporous organosilicate thin films. Nano Lett. 5, 2014–2018 (2005).

    Article  CAS  Google Scholar 

  25. Fukumoto, H., Nagano, S., Kawatsuki, N. & Seki, T. Photo-alignment behavior of mesoporous silica thin films synthesized on a photo-cross-linkable polymer film. Chem. Mater. 18, 1226–1234 (2006).

    Article  CAS  Google Scholar 

  26. Choi, K.-S., McFarland, E. W. & Stucky, G. D. Electrocatalytic properties of thin mesoporous platinum films synthesized utilizing potential-controlled surfactant assembly. Adv. Mater. 15, 2018–2021 (2003).

    Article  CAS  Google Scholar 

  27. Shacham, R., Avnir, D. & Mandler, D. Electrodeposition of methylated sol-gel films on conducting surfaces. Adv. Mater. 11, 384–388 (1999).

    Article  CAS  Google Scholar 

  28. Sibottier, E., Sayen, S., Gaboriaud, F. & Walcarius, A. Factors affecting the preparation and properties of electrodeposited silica thin films functionalized with amine or thiol groups. Langmuir 22, 8366–8373 (2006).

    Article  CAS  Google Scholar 

  29. Bartlett, P. N., Birkin, P. R. & Ghanem, M. A. Electrochemical deposition of macroporous platinum, palladium and cobalt films using polystyrene latex sphere templates. Chem. Commun. 1671–1672 (2000).

  30. Choi, K.-S., Lichtenegger, H. C., Stucky, G. D. & McFarland, E. W. Electrochemical synthesis of nanostructured ZnO films utilizing self-assembly of surfactant molecules at solid-liquid interfaces. J. Am. Chem. Soc. 124, 12402–12403 (2002).

    Article  CAS  Google Scholar 

  31. Choi, Y.-K., King, T.-J. & Hu, C. Nanoscale CMOS spacer FinFET for the terabit era. IEEE Electron Device Lett. 23, 25–27 (2002).

    Article  CAS  Google Scholar 

  32. Metz, S., Trautmann, C., Bertsch, A. & Renaud, P. Polyimide microfluidic devices with integrated nanoporous filtration areas manufactured by micromachining and ion track technology. J. Micromech. Microeng. 14, 324–331 (2004).

    Article  CAS  Google Scholar 

  33. Xu, C. X., Zhang, X. S. & Sun, X. W. Preparation of porous alumina by anodization. J. Metastable Nanocryst. Mater. 23, 75–78 (2005).

    Article  CAS  Google Scholar 

  34. Sato, H. & Homma, T. Fabrication of high-aspect-ratio arrayed structures using Si electrochemical etching. Sci. Technol. Adv. Mater. 7, 468–474 (2006).

    Article  CAS  Google Scholar 

  35. Naik, S. P. et al. Phase and orientation control of mesoporous silica thin film via phase transformation. Thin Solid Films 495, 11–17 (2006).

    Article  CAS  Google Scholar 

  36. Matheron, M. et al. Highly ordered CTAB-templated organosilicate films. J. Mater. Chem. 15, 4741–4745 (2005).

    Article  CAS  Google Scholar 

  37. Etienne, M., Cortot, J. & Walcarius, A. Preconcentration electroanalysis at surfactant-templated thiol-functionalized silica thin films. Electroanalysis 19, 129–138 (2007).

    Article  CAS  Google Scholar 

  38. Ryabov, A. D., Amon, A., Gorbatova, R. K., Ryabova, E. S. & Gnedenko, B. B. Mechanism of a “jumping off” ferricenium in glucose oxidase-D-glucose-ferrocene micellar electrochemical systems. J. Phys. Chem. 99, 14072–14077 (1995).

    Article  CAS  Google Scholar 

  39. Massari, A. M., Gurney, R. W., Schwartz, C. P., Nguyen, S. T. & Hupp, J. T. Walljet electrochemistry: Quantifying molecular transport through metallopolymeric and zirconium phosphonate assembled porphyrin square thin films. Langmuir 20, 4422–4429 (2004).

    Article  CAS  Google Scholar 

  40. Etienne, M. et al. Molecular transport into mesostructured silica thin films: Electrochemical monitoring and comparison between p6m, P63/mmc, Pm3n structures. Chem. Mater. 19, 844–856 (2007).

    Article  CAS  Google Scholar 

  41. Etienne, M. & Walcarius, A. Evaporation induced self-assembly of templated silica and organosilica thin films on various electrode surfaces. Electrochem. Commun. 7, 1449–1456 (2005).

    Article  CAS  Google Scholar 

  42. Moller, K. & Bein, T. Inclusion chemistry in periodic mesoporous hosts. Chem. Mater. 10, 2950–2963 (1998).

    Article  CAS  Google Scholar 

  43. Walcarius, A. & Sibottier, E. Electrochemically-induced deposition of amine-functionalized silica films on gold electrodes and application to Cu(II) detection in (hydro)alcoholic medium. Electroanalysis 17, 1716–1726 (2005).

    Article  CAS  Google Scholar 

  44. Sanchez-Rivera, A. E., Vital-Vaquier, V., Romero-Romo, M., Ramirez-Silva, M. T. & Palomar-Pardave, M. Electrochemical deposition of cetyltrimethylammonium surface hemimicelles at the Hg/0.1 M NaCl(aq) interface. J. Electrochem. Soc. 151, C666-C673 (2004).

    Article  Google Scholar 

  45. Deepa, P. N., Kanungo, M., Claycomb, G., Sherwood, P. M. A. & Collinson, M. M. Electrochemically deposited sol-gel-derived silicate films as a viable alternative in thin-film design. Anal. Chem. 75, 5399–5405 (2003).

    Article  CAS  Google Scholar 

  46. Burges, I. et al. Direct visualization of the potential-controlled transformation of hemimicellar aggregates of dodecyl sulfate into a condensed monolayer at the Au(111) electrode surface. Langmuir 15, 2607–2616 (1999).

    Article  Google Scholar 

  47. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (Wiley, New York, 1980).

    Google Scholar 

  48. Shacham, R., Mandler, D. & Avnir, D. Electrochemically induced sol-gel deposition of zirconia thin films. Chem. Eur. J. 10, 1936–1943 (2004).

    Article  CAS  Google Scholar 

  49. Shacham, R., Avnir, D. & Mandler, D. Electrodeposition of dye-doped titania thin films. J. Sol-Gel Sci. Technol. 31, 329–334 (2004).

    Article  CAS  Google Scholar 

  50. Wang, D. et al. A general route to macroscopic hierarchical 3D nanowire networks. Angew. Chem. Int. Edn 43, 6169–6173 (2004).

    Article  CAS  Google Scholar 

  51. Walcarius, A. Impact of mesoporous silica-based materials on electrochemistry and feedback from electrochemical science to the characterization of these ordered materials. C. R. Chim. 8, 693–712 (2005).

    Article  CAS  Google Scholar 

  52. Walcarius, A., Mandler, D., Cox, J., Collinson, M. M. & Lev, O. Exciting new directions in the intersection of functionalized sol-gel materials with electrochemistry. J. Mater. Chem. 15, 3663–3689 (2005).

    Article  CAS  Google Scholar 

  53. Angnes, L., Richter, E. M., Augelli, M. A. & Kume, G. H. Gold electrodes from recordable CDs. Anal. Chem. 72, 5503–5506 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the French National Research Agency (project No. NT05-3_41602 ‘mesoporelect’). We are also grateful to A. Kohler and S. Borensztajn for the SEM and FE-SEM experiments, respectively, and to C. Effoua for help with some of the experiments.

Author information

Authors and Affiliations

Authors

Contributions

A.W. was responsible for the project planning and data analysis, E.S. mainly contributed to the experimental work, M.E. carried out both experimental work and data analysis and J.G. obtained the TEM micrographs.

Corresponding author

Correspondence to A. Walcarius.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1-S6 (PDF 730 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walcarius, A., Sibottier, E., Etienne, M. et al. Electrochemically assisted self-assembly of mesoporous silica thin films. Nature Mater 6, 602–608 (2007). https://doi.org/10.1038/nmat1951

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1951

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing