Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The shape of a Möbius strip

Abstract

The Möbius strip, obtained by taking a rectangular strip of plastic or paper, twisting one end through 180, and then joining the ends, is the canonical example of a one-sided surface. Finding its characteristic developable shape has been an open problem ever since its first formulation in refs 1,2. Here we use the invariant variational bicomplex formalism to derive the first equilibrium equations for a wide developable strip undergoing large deformations, thereby giving the first non-trivial demonstration of the potential of this approach. We then formulate the boundary-value problem for the Möbius strip and solve it numerically. Solutions for increasing width show the formation of creases bounding nearly flat triangular regions, a feature also familiar from fabric draping3 and paper crumpling4,5. This could give new insight into energy localization phenomena in unstretchable sheets6, which might help to predict points of onset of tearing. It could also aid our understanding of the relationship between geometry and physical properties of nano- and microscopic Möbius strip structures7,8,9.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Photo of a paper Möbius strip of aspect ratio 2π.
Figure 2: Computed Möbius strips.
Figure 3: Curvature and torsion of a Möbius strip.
Figure 4: Tearing a piece of paper.

References

  1. 1

    Sadowsky, M. in Proc. 3rd Int. Congr. Appl. Mech., Stockholm (Sweden) Vol. 2 (eds Oseen, A. C. W. & Weibull, W.) 444–451 (AB. Sveriges Litografiska Tryckerier, Stockholm, 1931).

    Google Scholar 

  2. 2

    Sadowsky, M. Ein elementarer Beweis für die Existenz eines abwickelbaren Möbiusschen Bandes und Zurückfürung des geometrischen Problems auf ein Variationsproblem. Sitzungsber. Preuss. Akad. Wiss. 22, 412–415 (1930).

    Google Scholar 

  3. 3

    Cerda, E., Mahadevan, L. & Pasini, J. M. The elements of draping. Proc. Natl Acad. Sci. USA 101, 1806–1810 (2004).

    CAS  Article  Google Scholar 

  4. 4

    Vliegenthart, G. A. & Gompper, G. Force crumpling of self-avoiding elastic sheets. Nature Mater. 5, 216–221 (2006).

    CAS  Article  Google Scholar 

  5. 5

    Lobkovsky, A., Ghentges, S., Li, H., Morse, D. & Witten, T. A. Scaling properties of stretching ridges in a crumpled elastic sheet. Science 270, 1482–1485 (1995).

    CAS  Article  Google Scholar 

  6. 6

    Cerda, E., Chaieb, S., Melo, F. & Mahadevan, L. Conical dislocations in crumpling. Nature 401, 46–49 (1999).

    CAS  Article  Google Scholar 

  7. 7

    Tanda, S. et al. A Möbius strip of single crystals. Nature 417, 397–398 (2002).

    CAS  Article  Google Scholar 

  8. 8

    Tanda, S., Tsuneta, T., Toshima, T., Matsuura, T. & Tsubota, M. Topological crystals. J. Phys. IV 131, 289–294 (2005).

    CAS  Google Scholar 

  9. 9

    Gravesen, J. & Willatzen, M. Eigenstates of Möbius nanostructures including curvature effects. Phys. Rev. A 72, 032108 (2005).

    Article  Google Scholar 

  10. 10

    Emmer, M. Visual art and mathematics: The Moebius band. Leonardo 13, 108–111 (1980).

    Article  Google Scholar 

  11. 11

    Yakubo, K., Avishai, Y. & Cohen, D. Persistent currents in Möbius strips. Phys. Rev. B 67, 125319 (2003).

    Article  Google Scholar 

  12. 12

    Hayashi, M. & Ebisawa, H. Little-Parks oscillation of superconducting Möbius strip. J. Phys. Soc. Japan 70, 3495–3498 (2001).

    CAS  Article  Google Scholar 

  13. 13

    Balakrishnan, R. & Satija, I. I. Gauge-invariant geometry of space curves: Application to boundary curves of Möbius-type strips. Preprint at <http://arxiv.org/abs/math-ph/0507039> (2005).

  14. 14

    Graustein, W. C. Differential Geometry (Dover, New York, 1966).

    Google Scholar 

  15. 15

    Wunderlich, W. Über ein abwickelbares Möbiusband. Monatsh. Math. 66, 276–289 (1962).

    Article  Google Scholar 

  16. 16

    Schwarz, G. A pretender to the title “canonical Moebius strip”. Pacif. J. Math. 143, 195–200 (1990).

    Article  Google Scholar 

  17. 17

    Schwarz, G. E. The dark side of the Moebius strip. Am. Math. Monthly 97 (December), 890–897 (1990).

    Article  Google Scholar 

  18. 18

    Randrup, T. & Røgen, P. Sides of the Möbius strip. Arch. Math. 66, 511–521 (1996).

    Article  Google Scholar 

  19. 19

    Love, A. E. H. A Treatise on the Mathematical Theory of Elasticity 4th edn (Cambridge Univ. Press, Cambridge, 1927).

    Google Scholar 

  20. 20

    Griffiths, P. A. Exterior Differential Systems and the Calculus of Variations Vol. 25 (Progress in Mathematics, Birkhäuser, Boston, 1983).

    Book  Google Scholar 

  21. 21

    Anderson, I. M. The Variational Bicomplex. Technical Report, Utah State Univ., available online at http://www.math.usu.edu/~fg_mp/Publications/VB/vb.pdf (1989).

  22. 22

    Langer, J. & Singer, D. Lagrangian aspects of the Kirchhoff elastic rod. SIAM Rev. 38, 605–618 (1996).

    Article  Google Scholar 

  23. 23

    Capovilla, R., Chryssomalakos, C. & Guven, J. Hamiltonians for curves. J. Phys. A 35, 6571–6587 (2002).

    Article  Google Scholar 

  24. 24

    Murata, S. & Umehara, M. Flat surfaces with singularities in Euclidean 3-space. Preprint at <http://arxiv.org/abs/math.DG/0605604> (2006).

  25. 25

    Chicone, C. & Kalton, N. J. Flat embeddings of the Möbius strip in R3. Commun. Appl. Nonlinear Anal. 9, 31–50 (2002).

    Google Scholar 

  26. 26

    Fuller, F. B. Decomposition of the linking number of a closed ribbon: A problem from molecular biology. Proc. Natl Acad. Sci. USA 75, 3557–3561 (1978).

    CAS  Article  Google Scholar 

  27. 27

    Barr, S. Experiments in Topology (Thomas Y. Crowell Company, New York, 1964).

    Google Scholar 

  28. 28

    Stasiak, A., Katritch, V. & Kauffman, L. H. (eds) in Ideal Knots (Series on Knots and Everything, Vol. 19, World Scientific, Singapore, 1998).

  29. 29

    Halpern, B. & Weaver, C. Inverting a cylinder through isometric immersions and isometric embeddings. Trans. Am. Math. Soc. 230, 41–70 (1977).

    Article  Google Scholar 

  30. 30

    Mahadevan, L. & Keller, J. B. The shape of a Möbius band. Proc. R. Soc. Lond. A 440, 149–162 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the UK’s Engineering and Physical Sciences Research Council under grant number GR/T22926/01.

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. H. M. van der Heijden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information and figures 1-4 (PDF 330 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Starostin, E., van der Heijden, G. The shape of a Möbius strip. Nature Mater 6, 563–567 (2007). https://doi.org/10.1038/nmat1929

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing