Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic in situ observation of rapid size and shape change of supported Pd nanoparticles during CO/NO cycling

Abstract

Understanding and improving the behaviour of supported precious-metal catalysts for a vast array of environmentally and economically important processes is a central area of research in catalysis. The removal of toxic gases such as CO and NO, without forming others (such as N2O), is particularly important. By combining energy-dispersive extended X-ray absorption fine-structure spectroscopy with a vibrational spectroscopy (infrared) and mass spectrometry, at high time resolution, in a single in situ experiment, we dynamically observe and quantify CO-, and subsequent NO-, induced size and shape changes of Pd nanoparticles during CO/NO cycling. In doing so we demonstrate a novel, non-oxidative redispersion (for example, an increase in metal surface area) mechanism, and suggest a model to bridge the structural and reactive functions of supported Pd catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Raw absorption and Fourier-transform representation of Pd K-edge dispersive EXAFS data in three different situations.
Figure 2: Relating Pd–Pd coordination number and the apparent number of atoms per Pd particle during CO/NO cycling.
Figure 3: Correlating structural changes with temporal variations of infrared active adsorbates and CO2 evolution during CO/NO cycling.
Figure 4: A schematic representation of the fundamental steps underlying the reversible, non-oxidative, size (redispersion and sintering) and/or shape changes of Pd nanoparticles during CO/NO cycling.

Similar content being viewed by others

References

  1. Dalla Betta, R. A., McCuney, R. C. & Sprys, J. W. Relative importance of thermal and chemical deactivation of noble metal automotive oxidation catalysts. Ind. Eng. Chem. Prod. Res. Dev. 15, 169–172 (1976).

    Article  CAS  Google Scholar 

  2. Che, M. & Bennett, C. O. The influence of particle size on the catalytic properties of supported metals. Adv. Catal. 36, 55–172 (1989).

    CAS  Google Scholar 

  3. Leiske, H., Lietz, G., Spindler, H. & Volter, J. Reactions of platinum in oxygen treated and hydrogen treated Pt-γAl2O3 catalysts 1. Temperature programmed reduction, adsorption and redispersion of platinum. J. Catal. 81, 8–16 (1983).

    Article  Google Scholar 

  4. Leiske, H., Lietz, G., Spindler, H., Hanke, W. & Volter, J. Reactions of Platinum in oxygen treated and hydrogen treated Pt-γAl2O3 catalysts 2. Ultraviolet visible studies, sintering of platinum, and soluble platinum. J. Catal. 81, 17–25 (1983).

    Article  Google Scholar 

  5. Birgersson, H., Eriksson, L., Boutonnet, M. & Jaras, S.G. Thermal gas treatment to regenerate spent automotive three-way exhaust catalysts (TWC). Appl. Catal. B 54, 193–200 (2004).

    Article  CAS  Google Scholar 

  6. Cabello-Galisteo, et al. Reactivation of sintered Pt/Al2O3 oxidation catalysts. Appl. Catal. B 59, 227–223 (2005).

    Article  Google Scholar 

  7. Daley, R. A., Christou, S. Y., Efstathiou, A. M. & Anderson, J. A. Influence of oxychlorination treatments on the redox and oxygen storage and release properties of thermally aged Pd–Rh/CexZr1−xO2/Al2O3 model three-way catalysts. Appl. Catal. B 60, 2117–227 (2005).

    Article  Google Scholar 

  8. Harris, P. J. F. Sulphur-induced faceting of platinum catalyst particles. Nature 323, 792–794 (1986).

    Article  CAS  Google Scholar 

  9. Hansen, P. L. et al. Atomic resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 205, 2053–2055 (2002).

    Article  Google Scholar 

  10. Hendriksen, B. L. M., Bobaru, S. S. & Frenken, J. W. M. Oscillatory CO oxidation on Pd(100) studied with in situ scanning tunneling microscopy. Surf. Sci. 552, 229–242 (2004).

    Article  CAS  Google Scholar 

  11. Lu, J.-L. et al. Low temperature CO induced growth of Pd supported on a monolayer silica film. Surf. Sci. Lett. 600, L153–L157 (2006).

    Article  CAS  Google Scholar 

  12. Howard, A., Mitchell, C. E. J. & Edgel, R. E. Real time STM observation of Ostwald ripening of Pd nanoparticles on TiO2(110) at elevated temperatures. Surf. Sci. Lett. 515, L504–508 (2002).

    Article  CAS  Google Scholar 

  13. Stone, P., Poulston, S., Bennett, R. A. & Bowker, M. Scanning tunnelling microscopy investigation of sintering in a model supported catalyst: nanoscale Pd on TiO2(110). Chem. Commun. 1369–1370 (1998).

  14. Schalow, T. et al. Size-dependent oxidation mechanism of supported Pd nanoparticles. Angew. Chem. Int. Edn. 45, 3693–3697 (2006).

    Article  CAS  Google Scholar 

  15. Farrauto, R. J. & Heck, R. M. Catalytic converters: State of the art and perspectives. Catal. Today 51, 351–360 (1999).

    Article  CAS  Google Scholar 

  16. Huber, B., Kosinen, P., Hakkinen, H. & Moseler, M. Oxidation of magnesia-supported Pd-clusters leads to the ultimate limit of epitaxy with a catalytic function. Nature Mater. 5, 44–47 (2006).

    Article  CAS  Google Scholar 

  17. Jentys, A. Estimation of mean size and shape of small metal particles by EXAFS. Phys. Chem. Chem. Phys. 1, 4059–4063 (1999).

    Article  CAS  Google Scholar 

  18. Newton, M. A., Dent, A. J. & Evans, J. Bringing time resolution to EXAFS: Recent developments and application to chemical systems. Chem. Soc. Rev. 31, 83–95 (2002).

    Article  CAS  Google Scholar 

  19. Fernandez-Garcia, M. et al. New Pd/CexZr1−xO2/Al2O3 three-way catalysts prepared by microemulsion—Part 1. Characterization and catalytic behaviour for CO oxidation. Appl. Catal. B 31, 39–50 (2001).

    Article  CAS  Google Scholar 

  20. Martinez-Arias, A. et al. New Pd/CexZr1−xO2/Al2O3 three-way catalysts prepared by microemulsion—Part 2. In situ analysis of CO oxidation and NO reduction, under stoichiometric CO+NO+O2 . Appl. Catal. B 31, 51–60 (2001).

    Article  CAS  Google Scholar 

  21. Iglesias-Juez, A., Martínez-Arias, A., Newton, M. A., Fiddy, S. G. & Fernández-García, M. Redox behaviour of Pd-based TWCs under dynamic conditions: Analysis using dispersive XAS and mass spectrometry. Chem. Commun. 4092–4094 (2005).

  22. Newton, M. A., Fiddy, S. G., Guilera, G., Jyoti, B. & Evans, J. Oxidation/reduction kinetics of supported Rh/Rh2O3 nanoparticles under plug flow conditions using dispersive EXAFS. Chem. Commun. 118–119 (2005).

  23. Heiz, U. & Bullock, E. L. Fundamental aspects of catalysis on supported metal clusters. J. Mater. Chem. 14, 564–577 (2004).

    Article  CAS  Google Scholar 

  24. Solymosi, F. & Banasagi, T. On the participation of NCO surface species in the NO+CO reaction. J. Catal. 202, 205–206 (2001).

    Article  CAS  Google Scholar 

  25. Newton, M. A., Dent, A. J., Fiddy, S. G., Jyoti, B. & Evans, J. Combining diffuse reflectance spectroscopy (DRIFTS), dispersive EXAFS, and mass spectrometry with high time resolution: potential, limitations, and application to the study of the interaction of NO with supported Rh catalysts. Catal. Today doi:10.1016/j.cattod.2006.09.034 (2006).

  26. Newton, M., A., Dent, A. J., Fiddy, S. G., Jyoti, B. & Evans, J. Identification of the surface species responsible for N2O formation from the chemisorption of NO on Rh/alumina. Phys. Chem. Chem. Phys. 9, 246–249 (2007).

    Article  CAS  Google Scholar 

  27. Newton, M. A. Beamsize related phenomena and effective normalisation in energy dispersive EXAFS for the study of heterogeneous catalysts, powder materials, and the processes they mediate: Observations, and (some) solutions. J. Synchrotron Rad. (in the press).

Download references

Acknowledgements

The authors would like to thank the ESRF for access to facilities and for the funding that permitted the development of this experiment on ID24. T. Mairs, F. Perrin, G. Guilera and A. Kroner are thanked for the various contributions they have made to this work; S. Pascarelli and O. Mathon are thanked for their general support and stewardship of the beamline. Finally, we acknowledge the CYCIT (projects CTQ2004-03409/BQU and CTQ2006-15600/BQU) for financial support. C. Belver thanks the Spanish ‘Ministerio de Educación y Ciencia’ for a ‘Juan de la Cierva’ postdoctoral grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mark A. Newton or Marcos Fernández-García.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information, table S1 and figures S1-S2 (PDF 161 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newton, M., Belver-Coldeira, C., Martínez-Arias, A. et al. Dynamic in situ observation of rapid size and shape change of supported Pd nanoparticles during CO/NO cycling. Nature Mater 6, 528–532 (2007). https://doi.org/10.1038/nmat1924

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1924

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing