Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Playing with carbon and silicon at the nanoscale

Abstract

Because of its superior properties silicon carbide is one of the most promising materials for power electronics, hard- and biomaterials. In the solid phase, the electronic and optical properties are controlled by the stacking of double layers of Si and C atoms. In thin films, a change in the stacking order often requires stress, which can be achieved naturally in systems with nanometre length scale. For this reason, nanotubes, nanowires and clusters can be used as building blocks for the synthesis of novel materials. Furthermore, playing at the nanometre length scale enables the nature of the SiC bonding to be modified, which is of prime importance for atomic engineering of nanostructures. In this review, emphasis is placed on the theoretical principles associated with SiC cage-like clusters and experimental work resulting from them.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synopsis showing some selected important structures based on carbon and silicon building blocks.
Figure 2: Comparison between heterostructures (superlattices) formed by only one material with different structure or extended defects and those formed by different chemical species.
Figure 3: Starke's model for a surface reconstruction in 3C–SiC(111)(3 × 3) Si-rich phase.
Figure 4: Evidence through first-order Raman spectroscopy of the non-local order in a-SiC compared with pure C and Si amorphous networks.
Figure 5: Multiwalled SiC nanotube and several proposed models.
Figure 6: Different forms of cage-like SiC fullerenes: endofullerenes, exofullerenes and heterofullerenes.

Similar content being viewed by others

References

  1. Choyke, W. J., Matsunami, H. & Pensl, G. (eds) Silicon Carbide: Recent Major Advances (Springer, Berlin, Heidelberg, New York, 2004).

    Google Scholar 

  2. Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).

    CAS  Google Scholar 

  3. Moissan, H. Action d'un courant électrique sur l'acide fluorhydrique anhydre. CRAS 102, 1543–1544 (1886)

    Google Scholar 

  4. Yin, M. T. & Cohen, M. L. Structural theory of graphite and graphitic silicon. Phys. Rev. B 29, 6996–6998 (1984).

    CAS  Google Scholar 

  5. Wang, Y. & Poirier, R. A. Generalized valence bond study of rotational singlet structures and pi bond energies for systems containing C=C, Si=Si, and C=Si double bonds. Can. J. Chem. 76, 477–482 (1998).

    CAS  Google Scholar 

  6. Moore, C. E. Atomic Energy Levels (NBS circular 467, United States Department of Commerce, 1971).

    Google Scholar 

  7. Chang, K. & Cohen, M. Structural and electronic properties of the high-pressure hexagonal phases of Si. Phys. Rev. B 30, 5376–5378 (1984).

    CAS  Google Scholar 

  8. Käckell, P., Wenzien, B. & Bechstedt, F. Influence of atomic relaxations on the structural properties of SiC polytypes from ab initio calculations. Phys. Rev. B 50, 17037–17046 (1994).

    Google Scholar 

  9. Alfè, D., Gillan, M. J., Towler, M. D. & Needs, R. J. Diamond and beta-tin structures of Si studied with quantum monte carlo calculations. Phys. Rev. B 70, 214102 (2004).

    Google Scholar 

  10. Zhao, G. & Bagayoko, D. Electronic structure and charge transfer in 3C- and 4H–SiC. New J. Phys. 2, 16 (2000).

    Google Scholar 

  11. Segall, M. D., Shah, R., Pickard, C. J. & Payne, M. C. Population analysis of plane-wave electronic structure calculations of bulk materials. Phys. Rev. B 54, 16317–16320 (1996).

    CAS  Google Scholar 

  12. Martins, J. L. & Zunger, A. Stability of ordered bulk and epitaxial semiconductor alloys. Phys. Rev. Lett. 56, 1400–1404 (1986).

    CAS  Google Scholar 

  13. Tersoff, J. Chemical order in amorphous silicon carbide. Phys. Rev. B 49, 16349–16352 (1994).

    CAS  Google Scholar 

  14. Esaki, L. & Chang, L. New transport phenomenon in a semiconductor “superlattice”. Phys. Rev. Lett. 33, 495 (1974).

    CAS  Google Scholar 

  15. Sibille, A., Palmier, J. H., W. & Mollot, F. Observation of Esaki-Tsu negative differential velocity in GaAs/AlAs superlattices. Phys. Rev. Lett. 64, 52–55 (1990).

    CAS  Google Scholar 

  16. Fissel, A., Kaiser, U., Schröter, B., Richter, W. & Bechstedt, F. MBE growth and properties of SiC multi-quantum well structures. Appl. Phys. Lett. 184, 37–42 (2001).

    CAS  Google Scholar 

  17. Bechstedt, F. & Käckell, P. Heterocrystalline structures: New types of superlattices? Phys. Rev. Lett. 75, 2180–2183 (1995).

    CAS  Google Scholar 

  18. Pirouz, P., Chorey, C. & Powell, J. Antiphase boundaries in epitaxially grown β-CiC. Appl. Phys. Lett. 50, 221–223 (1987).

    CAS  Google Scholar 

  19. Lambrecht, W. & Segall, B. Electronic-structure study of the (110) inversion domain boundary in SiC. Phys. Rev. B 41, 2948–2958 (1990).

    CAS  Google Scholar 

  20. Deák, P., Buruzs, A., Gali, A. & Frauenheim, T. Strain-free polarization superlattice in silicon carbide: A theoretical investigation. Phys. Rev. Lett. 96, 236803 (2006).

    Google Scholar 

  21. Starke, U. et al. Novel reconstruction mechanism for dangling-bond minimization: Combined method surface structure determination of SiC(111)-(3 × 3). Phys. Rev. Lett. 80, 758–761 (1998).

    CAS  Google Scholar 

  22. Starke, U., Bernhardt, J., Schardt, J. & Heinz, K. SiC surface reconstruction: Relevancy of atomic structure for growth technology. Surf. Rev. Lett. 6, 1129–1142 (1999).

    CAS  Google Scholar 

  23. Coati, A. et al. (√3 × √3) R30° reconstruction of the 6H–SiC (0001) surface: A simple T4 Si adatoms structure solved by grazing-incidence x-ray diffraction. Phys. Rev. B 59, 12224–12227 (1999).

    CAS  Google Scholar 

  24. Ohta, T., Bostwick, A., Seyller, T., Horn, K. & Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006).

    CAS  Google Scholar 

  25. Wander, A. et al. Stability of polar oxide surfaces. Phys. Rev. Lett. 86, 3811–3814 (2001).

    CAS  Google Scholar 

  26. Freeman, C., Claeyssens, F., Allan, N. & Harding, J. Graphitic nanofilms as precursors to wurtzite films: Theory. Phys. Rev. Lett. 96, 066102 (2006).

    Google Scholar 

  27. Tabata, A., Kuno, Y., Suzuoki, Y. & Mizutani, T. Properties of hydrogenated amorphous silicon carbide films prepared by a separately excited plasma CVD method. J. Phys. D 30, 194–201 (1997).

    CAS  Google Scholar 

  28. Serre, C. et al. Ion-beam synthesis of amorphous SiC films: Structural analysis and recrystallization. J. Appl. Phys. 79, 6907–6913 (1996).

    CAS  Google Scholar 

  29. Compagnini, G., Foti, G. & Makhtari, A. Vibrational analysis of compositional disorder inamorphous silicon carbon alloys. Eur. Phys. Lett. 41, 225–230 (1998).

    CAS  Google Scholar 

  30. Snead, L. L., Zinkle, S. J., Hay, J. C. & Osbome, M. C. Amorphization of SiC under ion and neutron irradiation. Nucl. Instrum. Meth. Phys. Res. B 141, 123–132 (1997).

    Google Scholar 

  31. Wooten, F., Winer, K. & Weaire, D. Computer generation of structural models of amorphous Si and Ge. Phys. Rev. Lett. 54, 1392–1395 (1985).

    CAS  Google Scholar 

  32. Clark, S. J., Crain, J. & Ackland, G. J. Comparison of bonding in amorphous silicon and carbon. Phys. Rev. B 55, 14059–14062 (1997).

    CAS  Google Scholar 

  33. Zachariasen, W. H. The atomic arrangement in glass. J. Am. Chem. Soc. 54, 3841–3851 (1932).

    CAS  Google Scholar 

  34. Chehaidar, A. et al. Chemical bonding analysis of a-SiC: H films by Raman spectroscopy. J. Non-Cryst. Solids 169, 37–46 (1994).

    CAS  Google Scholar 

  35. Mousseau, N. & Barkema, G. T. Binary continuous random networks. J. Phys. Condens. Matter 16, S5183–S5190 (2004).

    CAS  Google Scholar 

  36. Demkov, A. A. & Sankey, O. F. Theoretical investigation of random Si–C alloys. Phys. Rev. B 48, 2207–2214 (1993).

    CAS  Google Scholar 

  37. Kelires, P. C. Short-range order and energetics of disordered silicon-carbon alloys. Phys. Rev. B 46, 10048–10061 (1992).

    CAS  Google Scholar 

  38. Rino, J. P. et al. Short- and intermediate-range structural correlations in amorphous siliconcarbide: A molecular dynamics study. Phys. Rev. B 70, 045207 (2004).

    Google Scholar 

  39. Kaloyeros, A. E., Rizk, R. B. & Woodhouse, J. B. Extended x-ray-absorption and electron energy-loss fine-structure studies of the local atomic structure of amorphous unhydrogenated and hydrogenated silicon carbide. Phys. Rev. B 38, 13099–3106 (1988).

    CAS  Google Scholar 

  40. Rovira, P. I. & Alvarez, F. Chemical (dis)order in a-Si1−xCx:H for x ≤0.6. Phys. Rev. B 55, 4426–4434 (1997).

    CAS  Google Scholar 

  41. Finocchi, F., Galli, G., Parinello, M. & Bertoni, C. M. Microscopic structure of amorphous covalent alloys probed by ab initio molecular dynamics: SiC. Phys. Rev. Lett. 68, 3044–3047 (1992).

    CAS  Google Scholar 

  42. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    CAS  Google Scholar 

  43. Jishi, R., Dresselhaus, M. & Dresselhaus, G. Symmetry properties of chiral carbon nanotubes. Phys. Rev. B 47, 16671–16674 (1993).

    CAS  Google Scholar 

  44. Sun, X. et al. Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes. J. Am. Chem. Soc. 124, 14464–14471 (2002).

    CAS  Google Scholar 

  45. Mavrandonakis, A., Froudakis, G., Schnell, M. & Mühläuser, M. From pure carbon to silicon-carbon nanotubes: An ab-initio study. Nano Lett. 3, 1481–1484 (2003).

    CAS  Google Scholar 

  46. Gali, A. Ab initio study of nitrogen and boron substitutional impurities in single-wall SiC nanotubes. Phys. Rev. B 73, 245415 (2006).

    Google Scholar 

  47. Menon, M., Richter, E., Mavrandonakis, A., Froudakis, G. & Andriotis, A. Structure and stability of SiC nanotubes. Phys. Rev. B 69, 115322 (2004).

    Google Scholar 

  48. Mpourmpakis, G., Froudakis, G., Lithoxoos, G. & Samios, J. SiC nanotubes: A novel material for hydrogen storage. Nano Lett 6, 1581–1583 (2006).

    CAS  Google Scholar 

  49. Dai, H., Wong, E. W., Lu, Y. Z., Fan, S. & Lieber, C. M. Synthesis and characterization of carbide nanorods. Nature 375, 769–772 (1995).

    CAS  Google Scholar 

  50. Ho, G., Wong, A., Kang, D. & Welland, M. Three-dimensional crystalline SiC nanowire flowers. Nanotechnol. 15, 996–999 (2004).

    CAS  Google Scholar 

  51. Saulig-Wenger, K. et al. Preparation of β-SiC nanowires and SiC@BN nanocables. J. Phys. IV France 124, 99–102 (2005).

    CAS  Google Scholar 

  52. Wang, Z. L, Dai, Z. R., Gao, R. P., Bai, Z. G. & Gole, J. L. Side-by-side silicon carbide-silica biaxial nanowires: Synthesis, structure, and mechanical properties. Appl. Phys. Lett. 77, 3349–3351 (2000).

    CAS  Google Scholar 

  53. Kim, Y., kim, S., Cho, K., Bae, S. & Kwon, W. Preparation of SiC nanoporous membrane for hydrogen separation at high temperature. Mater. Sci. Forum 510, 926–929 (2000).

    Google Scholar 

  54. Rosenbloom, A. et al. Porous silicon carbide as a membrane for implantable biosensors. J. Microdev. 6, 261–267 (2004).

    CAS  Google Scholar 

  55. Gogotsi, Y., Welz, S., Ersoy, D. & McNallan, M. Conversion of silicon carbide to crystalline diamond-structured carbon at ambient pressure. Nature 411, 283–287 (2001).

    CAS  Google Scholar 

  56. Fan, J. Y., Wu, X. L., Qiu, T. & Huang, G. S. Luminescent silicon carbide nanocrystallites in 3C − SiC/polystyrene films. Appl. Phys. Lett. 86, 171903 (2005).

    Google Scholar 

  57. Kassiba, A. et al. Photoluminescence features on the Raman spectra of quasistoichiometric SiC nanoparticles: Experimental and numerical simulations. Phys. Rev. B 66, 155317 (2002).

    Google Scholar 

  58. Mélinon, P. et al. Nanostructured SiC films obtained by neutral cluster depositions. Phys. Rev. B 58, 16481–16490 (1998).

    Google Scholar 

  59. Chehaidar, A., Zwick, A. & Carles, R. Investigation of structural and chemical ordering in Si-rich amorphous SiC alloys via Raman spectroscopy and numerical modelling. J. Phys. Condens. Matter 13, 10743–10755 (2001).

    CAS  Google Scholar 

  60. Efsathiadis, H., Yin, Z. & Smith, F. W. Atomic bonding in amorphous hydrogenated siliconcarbide alloys: A statistical thermodynamic approach. Phys. Rev. B 46, 13119–13130 (1992).

    Google Scholar 

  61. Ray, A. & Huda, M. Silicon -carbide nano-clusters: A pathway to future nano-electronics. J. Comput.Theor. Nanosci. 3, 315–341 (2006).

    CAS  Google Scholar 

  62. Haddon, R. C. GVB and POAV analysis of rehybridization and π-orbital misalignment in non-planar conjugated systems. Chem. Phys. Lett. 125, 231–234 (1986).

    CAS  Google Scholar 

  63. von Helden, G., Hsu, M. T., Kemper, P. R. & Bowers, M. T. Structures of carbon cluster ions from 3 to 60 atoms: Linears to rings to fullerenes. J. Chem. Phys. 95, 3835–3837 (1991).

    CAS  Google Scholar 

  64. Ray, C. et al. Synthesis and structure of silicon-doped heterofullerenes. Phys. Rev. Lett. 80, 5365–5368 (1998).

    CAS  Google Scholar 

  65. Pellarin, M. et al. Photolysis experiments on SiC mixed clusters: From silicon carbide clusters to silicon-doped fullerenes. J. Chem. Phys. 110, 6927–6938 (1999).

    CAS  Google Scholar 

  66. Kimura, T., Sugai, T. & Shinohara, H. Production and characterization of boron- and silicon doped carbon clusters. Chem. Phys. Lett. 256, 269–273 (1996).

    CAS  Google Scholar 

  67. Fye, J. L. & Jarrold, M. F. Structures of silicon-doped carbon clusters. J. Phys. Chem A 101, 1836–1840 (1997).

    CAS  Google Scholar 

  68. Branz, W. et al. Cage substitution in metal fullerene clusters. J. Chem. Phys. 109, 3425–3430 (1998).

    CAS  Google Scholar 

  69. Ohtsuki, T. et al. Formation of As- and Ge-doped heterofullerenes. Phys. Rev. B 60, 1531–1534 (1999).

    CAS  Google Scholar 

  70. Car, R. & Parrinello, M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985).

    CAS  Google Scholar 

  71. Billas, I. M. L. et al. First principles calculations of Si doped fullerenes: Structural and electronic localization properties in C59Si and C58Si2 . J. Chem. Phys. 111, 6787–6796 (1999).

    CAS  Google Scholar 

  72. Jelski, D. A., Bowser, J. R., Xia, X., Gao, J. & George, T. F. Structures and relative stabilities of silicon-containing buckminsterfullerenes: An AM1 computational study. J. Cluster Sci. 4, 173–183 (1993).

    CAS  Google Scholar 

  73. Menon, M. Generalized tight-binding molecular dynamics scheme for heteroatomic systems: Application to SimCn clusters. J. Chem. Phys. 114, 7731–7735 (2001).

    CAS  Google Scholar 

  74. Matsubara, M. & Massobrio, C. Stable highly doped C60−mSim heterofullerenes: A first principles study of C40Si20, C36Si24, and C30Si30 . J. Phys. Chem. A 109, 4415–4418 (2005).

    CAS  Google Scholar 

  75. Marcos, P. A., Alonso, J. A. & Lopè z, M. J. Simulating the thermal behavior and fragmentation mechanisms of exohedral and substitutional silicon-doped C60 . J. Chem. Phys. 123, 204323 (2005).

    CAS  Google Scholar 

  76. Matsubara, M., Kortus, J., Parlebas, J. C. & Massobrio, C. Dynamical identification of a threshold instability in Si-doped heterofullerenes. Phys. Rev. Lett. 96, 155502 (2006).

    CAS  Google Scholar 

  77. Dunlap, B. I. & Boettger, J. C. Local-density-functional study of the fullerenes, grapheme and graphite. J. Phys. B 29, 4907–4913 (1996).

    CAS  Google Scholar 

  78. Gong, X. G. & Zheng, Q. Q. Electronic structures and stability of Si60 and C60@Si60 clusters. Phys. Rev. B 52, 4756–4759 (1995).

    CAS  Google Scholar 

  79. Sun, Q., Wang, Q., Jena, P., Rao, B. K. & Kawazoe, Y. Stabilization of Si60 cage structure. Phys. Rev. Lett. 90, 135503 (2003).

    CAS  Google Scholar 

  80. Kaxiras, E. Effect of surface reconstruction on stability and reactivity of Si clusters. Phys. Rev. Lett. 64, 551–554 (1990).

    CAS  Google Scholar 

  81. Röthlisberger, U., Andreoni, W. & Parinello, M. Structure of nanoscale silicon clusters. Phys. Rev. Lett. 72, 665–668 (1994).

    Google Scholar 

  82. Kasper, J., Hagenmuller, P., Pouchard, M. & Cros, C. Clathrate structure of silicon Na8Si46 and NaxSi136 (x<11). Science 150, 1713–1714 (1965).

    CAS  Google Scholar 

  83. Gryko, J. et al. Low-density framework form of crystalline silicon with a wide optical bandgap. Phys. Rev. B 62, R7707–R7710 (2000).

    CAS  Google Scholar 

  84. Connétable, D. et al. Superconductivity in doped sp3 semiconductors: The case of the clathrates. Phys. Rev. Lett. 91, 247001 (2001).

    Google Scholar 

  85. Blase, X., Gillet, P., San Miguel, A. & Mélinon, P. Exceptional ideal strength of carbonclathrates. Phys. Rev. Lett. 92, 215505–215508 (2004).

    CAS  Google Scholar 

  86. Srinivasan, A., Huda, M. N. & Ray, A. K. Silicon-carbon fullerene like nanostructures: An ab initio study on the stability of Si60C2n (n = 1, 2) clusters. Phys. Rev. A 72, 063201 (2005).

    Google Scholar 

  87. Reinke, P. & Oelhafen, P. In situ photoelectron spectroscopy investigation of silicon cluster growth on fullerene surfaces. Phys. Rev. B 71, 045420 (2005).

    Google Scholar 

  88. Pellarin, M. et al. Gas phase study of silicon-C60 complexes: Surface coating and polymerization. J. Chem. Phys. 112, 8436–8445 (2000).

    CAS  Google Scholar 

  89. Guirado-López, R. Stability and electronic properties of Si-doped carbon fullerenes. Phys. Rev. B 65, 165421 (2002).

    Google Scholar 

  90. Marcos, P. A., Alonso, J. A., López, M. J. & Hernández, E. Tight binding studies of exohedral silicon doped C60 . Comp. Sci. Technol. 63, 1499–1505 (2003).

    CAS  Google Scholar 

  91. Tanaka, H., Ōsawa, S., Onoe, J. & Takeuchi, K. Formation process of Si–Coated C60 . J. Phys. Chem. B 103, 5939–5942 (1999).

    CAS  Google Scholar 

  92. Masenelli, B., Tournus, F., Mélinon, P., Perez, A. & Blase, X. Ab initio study of C60-silicon clusters. J. Chem. Phys. 117, 10627–10634 (2002).

    CAS  Google Scholar 

  93. Moriarty, P., Ma, Y. R., Upward, M. D. & Beton, P. H. Translation, rotation and removal of C60 on Si(100)-2×1 using anisotropic molecular manipulation. Surf. Sci. 407, 27–35 (1998).

    CAS  Google Scholar 

  94. Godwin, P. D., Kenny, S. D., Smith, R. & Belbruno, J. The structure of C60 and endohedral C60 on the Si100 surface. Surf. Sci. 490, 409–414 (2001).

    CAS  Google Scholar 

  95. Tournus, F. et al. Bridging C60 by silicon: towards non-van der Waals C60-based materials. Phys. Rev. B 65, 165417 (2002).

    Google Scholar 

  96. Fujiwara, K. & Komatsu, K. Mechanochemical synthesis of a novel C60 dimer connected by a silicon bridge and a single bond. Org. Lett. 4, 1039–1041 (2002).

    CAS  Google Scholar 

  97. Verucchi, R. et al. SiC film growth on Si(111) by supersonic beams of C60 . Eur. Phys. J. B 26, 509–514 (2002).

    CAS  Google Scholar 

  98. Meynadier, M. et al. Indirect-direct anticrossing in GaAs-AlAs superlattices induced by an electric field: Evidence of Γ − X mixing. Phys. Rev. Lett. 60, 1338–1341 (1988).

    CAS  Google Scholar 

  99. Marks, N. A., McKenzie, D. R., Pailthorpe, B. A., Bernasconi, M. & Parrinello, M. Microscopic structure of tetrahedral amorphous carbon. Phys. Rev. Lett. 76, 768–771 (1996).

    CAS  Google Scholar 

  100. Tuttle, B. & Adams, J. Structure, dissociation, and the vibrational signatures of hydrogen clusters in amorphous silicon. Phys. Rev. B 56, 4565–4572 (1997).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to M. Fuller and M. Kasrai of the University of Western Ontario for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mélinon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mélinon, P., Masenelli, B., Tournus, F. et al. Playing with carbon and silicon at the nanoscale. Nature Mater 6, 479–490 (2007). https://doi.org/10.1038/nmat1914

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1914

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing