Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Modulus–density scaling behaviour and framework architecture of nanoporous self-assembled silicas

Abstract

Natural porous materials such as bone, wood and pith evolved to maximize modulus for a given density1. For these three-dimensional cellular solids, modulus scales quadratically with relative density2,3. But can nanostructuring improve on Nature’s designs? Here, we report modulus–density scaling relationships for cubic (C), hexagonal (H) and worm-like disordered (D) nanoporous silicas prepared by surfactant-directed self-assembly. Over the relative density range, 0.5 to 0.65, Young’s modulus scales as (density)n where n(C)<n(H)<n(D)<2, indicating that nanostructured porous silicas exhibit a structure-specific hierarchy of modulus values D<H<C. Scaling exponents less than 2 emphasize that the moduli are less sensitive to porosity than those of natural cellular solids, which possess extremal moduli based on linear elasticity theory4. Using molecular modelling and Raman and NMR spectroscopy, we show that uniform nanoscale confinement causes the silica framework of self-assembled silica to contain a higher portion of small, stiff rings than found in other forms of amorphous silica. The nanostructure-specific hierarchy and systematic increase in framework modulus we observe, when decreasing the silica framework thickness below 2 nm, provides a new ability to maximize mechanical properties at a given density needed for nanoporous materials integration5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modulus–density scaling relationships.
Figure 2: Cross-sectional and plan-view TEM images.
Figure 3: Simulated trends in mechanical and structural properties of amorphous silica confined to nanometre-scale slabs with thicknesses ranging from 2 to 1 nm.
Figure 4: Raman spectra of self-assembled nanostructured films, a high-surface-area silica xerogel and conventional amorphous silica.
Figure 5: Solid-state magic-angle-spinning 29Si–NMR spectra of D, H and C nanostructured silica films prepared by evaporation-induced self-assembly using 5wt% Brij-56 surfactant (as in Fig. 2).

Similar content being viewed by others

References

  1. Vincent, J. F. V. & Currey, J. D. 34th Symp. Soc. Exp. Biol. (Cambridge Univ. Press, Cambridge, 1980).

    Google Scholar 

  2. Gibson, L. J. The mechanical behaviour of cancellous bone. J. Biomech. 18, 317–328 (1985).

    Article  CAS  Google Scholar 

  3. Gibson, L. J. & Ashby, M. F. The mechanics of three-dimensional cellular materials. Proc. R. Soc. Lond. A 382, 43–59 (1982).

    Article  CAS  Google Scholar 

  4. Hashin, Z. & Shtrikman, S. A variational approach to the theory of the elastic behavior of multiphase materials. J. Mech. Phys. Solids 11, 127–140 (1963).

    Article  Google Scholar 

  5. Brinker, C. J. & Scherer, G. W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic, San Diego, 1990).

    Google Scholar 

  6. Woignier, T. & Phalippou, J. Scaling law variation of the mechanical-properties of silica aerogels. J. Phys. 50, C4179–C4184 (1989).

    Google Scholar 

  7. Miller, R. D. Device physics: In search of low-k dielectrics. Science 286, 421 (1999).

    Article  CAS  Google Scholar 

  8. The International Technology Roadmap for Semiconductors 2005 (ITRS 2005), Interconnect section.

  9. Lu, Y. F. et al. Continuous formation of supported cubic and hexagonal mesoporous films by sol–gel dip-coating. Nature 389, 364–368 (1997).

    Article  CAS  Google Scholar 

  10. Ting, C. Y., Ouyan, D. F. & Wan, B. Z. Preparation of ultra-low dielectric constant porous silica films using Tween 80 as a template. J. Electrochem. Soc. 150, F164 (2003).

    Article  CAS  Google Scholar 

  11. Cassiers, K. et al. A detailed study of thermal; hydrothermal; and mechanical stabilities of a wide range of surfactant assembled mesoporous silicas. Chem. Mater. 14, 2317–2324 (2002).

    Article  CAS  Google Scholar 

  12. Gusev, V. Y., Feng, X. B., Bu, Z., Haller, G. L. & O’Brien, J. A. Mechanical stability of pure silica mesoporous MCM-41 by nitrogen adsorption and small-angle X-ray diffraction measurements. J. Phys. Chem. 100, 1985–1988 (1996).

    Article  CAS  Google Scholar 

  13. Hartmann, M. & Bischof, C. Mechanical stability of mesoporous molecular sieve MCM-48 studied by adsorption of benzene; n-heptane; and cyclohexane. J. Phys. Chem. B 103, 6230–6235 (1999).

    Article  CAS  Google Scholar 

  14. Wu, J. J., Liu, X. Y. & Tolbert, S. H. High-pressure stability in ordered mesoporous silicas: Rigidity and elasticity through nanometer scale arches. J. Phys. Chem. B 104, 11837–11841 (2000).

    Article  CAS  Google Scholar 

  15. Kirsch, B. L., Chen, X., Richman, E. K., Gupta, V. & Tolbert, S. H. Probing the effects of nanoscale architecture on the mechanical properties of hexagonal silica/polymer composites thin films. Adv. Funct. Mater. 15, 1319 (2005).

    Article  CAS  Google Scholar 

  16. Fan, H. Y. et al. Rapid prototyping of patterned functional nanostructures. Nature 405, 56–60 (2000).

    Article  CAS  Google Scholar 

  17. Smarsly, B., Gibaud, A., Ruland, W., Sturmayr, D. & Brinker, C. J. Quantitative SAXS analysis of oriented 2D hexagonal cylindrical silica mesostructures in thin films obtained from nonionic surfactants. Langmuir 21, 3858 (2005).

    Article  CAS  Google Scholar 

  18. Frye, G. C. et al. in Better Ceramics Through Chemistry IV (eds Zelinski, B. J. J., Brinker, C. J., Clark, D. E. & Ulrich, D. R.) 583–593 (Mater. Res. Soc., San Francisco, 1990).

    Google Scholar 

  19. Oliver, W. C. & Pharr, G. M. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).

    Article  CAS  Google Scholar 

  20. Jain, A. et al. Effects of processing history on the modulus of silica xerogel films. J. Appl. Phys. 90, 5832–5834 (2001).

    Article  CAS  Google Scholar 

  21. Jiang, Y.-B., Liu, N., Gerung, H., Cecchi, J. L. & Brinker, C. J. Nanometer-thick conformal pore sealing of self-assembled mesoporous silica by plasma-assisted atomic layer deposition. J. Am. Chem. Soc. 128, 11018–11019 (2006).

    Article  CAS  Google Scholar 

  22. Zha, C. S., Hemley, R. J., Mao, H. K., Duffy, T. S. & Meade, C. Acoustic velocities and refractive-index of SiO2 glass to 57. 5-GPa by Brillouin-scattering. Phys. Rev. B 50, 13105–13112 (1994).

    Article  CAS  Google Scholar 

  23. Lacks, D. J. Localized mechanical instabilities and structural transformations in silica glass under high pressure. Phys. Rev. Lett. 80, 5385–5388 (1998).

    Article  CAS  Google Scholar 

  24. Lacks, D. J. First-order amorphous-amorphous transformation in silica. Phys. Rev. Lett. 84, 4629–4632 (2000).

    Article  CAS  Google Scholar 

  25. Sugiura, H., Ikeda, R., Kondo, K. & Yamadaya, T. Densified silica glass after shock compression. J. Appl. Phys. 81, 1651–1655 (1997).

    Article  CAS  Google Scholar 

  26. Brinker, C. J., Kirkpatrick, R. J., Tallant, D. R., Bunker, B. C. & Montez, B. NMR confirmation of strained defects in amorphous silica. J. Non-Cryst. Solids 99, 418–428 (1988).

    Article  CAS  Google Scholar 

  27. Galeener, F. L. in The Structure of Non-Crystalline Materials (eds Gaskell, P. H., Parker, J. M. & Davis, E. K.) 337–359 (Taylor and Francis, London, 1982).

    Google Scholar 

  28. Gibaud, A. et al. Wall thickness and core radius determination in surfactant templated silica thin films using GISAXS and X-ray reflectivity. Europhys. Lett. 63, 833 (2003).

    Article  CAS  Google Scholar 

  29. Trofymluk, O., Levchenko, A. A., Tolbert, S. H. & Navrotsky, A. Energetics of mesoporous silica: Investigation into pore size and symmetry. J. Phys. Chem. B 17, 3772–3783 (2005).

    CAS  Google Scholar 

  30. Borodko, Y. et al. Structure sensitivity of vibrational spectra of mesoporous silica SBA-15 and Pt/SBA-15. J. Phys. Chem. B 109, 17386–17390 (2005).

    Article  CAS  Google Scholar 

  31. Oestrike, R. et al. High-resolution Na-23; Al-27; and Si-29 NMR-spectroscopy of framework aluminosilicate glasses. Geochim. Cosmochim. Acta 51, 2199–2209 (1987).

    Article  CAS  Google Scholar 

  32. O’Keefe, M. & Gibbs, G. V. Defects in amorphous silica: Ab intio MO Calculations. J. Chem. Phys. 81, 876 (1984).

    Article  Google Scholar 

  33. Torquato, S. & Donev, A. Minimal surfaces and multifunctionality. Proc. R. Soc. Lond. A 460, 1849–1856 (2004).

    Article  Google Scholar 

  34. Torquato, S. Effective stiffness tensor of composite media: II. Applications to isotropic dispersions. J. Mech. Phys. Solids 46, 1411–1440 (1998).

    Article  CAS  Google Scholar 

  35. Tatsumi, T., Koyano, K., Tanaka, Y. & Nakata, S. Mechanochemical collapse of M41S mesoporous molecular sieves through hydrolysis of siloxane bonds. Chem. Lett. 469–470 (1997).

  36. Torquato, S., Donev, A., Evans, A. G. & Brinker, C. J. Manufacturable extremal low-dielectric, high-stiffness porous materials. J. Appl. Phys. 97, 124103 (2005).

    Article  Google Scholar 

  37. Alud, B. Acoustic Fields and Waves in Solids (Wiley, New York, 1973).

    Google Scholar 

  38. Van Beest, B. W. H., Kramer, G. J. & van Santen, R. A. Force-fields for silicas and aluminophosphates based on ab initio calculations. Phys. Rev. Lett. 64, 1955 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Doshi (UNM), A. Gibaud (Université du Maine), B. Smarsly (Max Planck Institute of Colloids and Interfaces) and R. Köhn (Munich) for GISAXS and SRSAXS, N. Liu (UNM) for molecular simulations of the cyclo-tetrasiloxane and G. Scherer (Princeton University) for many useful discussions. This work was supported by the US Department of Energy Office of Science, Air Products and Chemicals, Incorporated, Sematech, the US Air Force (FA9550-04-1-0087-CJB; F49620-03-1-0406-ST), the Army Research Office (DAAD19-03-1-0227-CJB), NSF (0402867-DJL) and the University of New Mexico/Rutgers/NSF Ceramics and Composites Research Center. TEM investigations were carried out in the Department of Earth and Planetary Sciences at the University of New Mexico. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the US DOE.

Author information

Authors and Affiliations

Authors

Contributions

H.F. prepared the nanostructured silicas, devising the means to achieve three different architectures at each density, carried out TEM and other structural characterization and oversaw the experimental work. C.H. under the guidance of T.B. carried out the nano-indentation experiments. R.S. and D.T. carried out Raman spectroscopy on thin-film nanostructures and (earlier) bulk silica gels. R.A. carried out 29Si magic-angle-spinning NMR spectroscopy. D.J.K. developed acoustic means to measure Poisson’s ratio of thin-film samples. D.J.L. carried out molecular simulations. S.L. carried out theoretical analyses of modulus–density scaling relationships. C.J.B. directed the research and contributed to the interpretation of the combined experimental, modelling and theoretical studies.

Corresponding author

Correspondence to C. Jeffrey Brinker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information and tables (PDF 317 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, H., Hartshorn, C., Buchheit, T. et al. Modulus–density scaling behaviour and framework architecture of nanoporous self-assembled silicas. Nature Mater 6, 418–423 (2007). https://doi.org/10.1038/nmat1913

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1913

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing