Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hierarchical architectures by synergy between dynamical template self-assembly and biomineralization

Abstract

Diatoms, shells, bones and teeth are exquisite examples of well-defined structures, arranged from nanometre to macroscopic length scale, produced by natural biomineralization using organic templates to control the growth of the inorganic phase1,2,3,4,5,6. Although strategies mimicking Nature have partially succeeded in synthesizing human-designed bio-inorganic composite materials7,8,9,10, our limited understanding of fundamental mechanisms has so far kept the level of hierarchical complexity found in biological organisms out of the chemists’ reach11. In this letter, we report on the synthesis of unprecedented double-walled silica nanotubes with monodisperse diameters that self-organize into highly ordered centimetre-sized fibres. A unique synergistic growth mechanism is elucidated by the combination of light and electron microscopy, synchrotron X-ray diffuse scattering and Raman spectroscopy. Following this growth mechanism, macroscopic bundles of nanotubules result from the kinetic cross-coupling of two molecular processes: a dynamical supramolecular self-assembly and a stabilizing silica mineralization. The feedback actions between the template growth and the inorganic deposition are driven by a mutual electrostatic neutralization. This ‘dynamical template’ concept can be further generalized as a rational preparation scheme for materials with well-defined multiscale architectures and also as a fundamental mechanism for growth processes in biological systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Silica mineralization of lanreotide.
Figure 2: Multiscale organization of silica–lanreotide nanotubes.
Figure 3: Evidence for double-walled silica–lanreotide nanotubes.
Figure 4: Dynamic template model for the growth mechanism of the peptide–silica fibres.

Similar content being viewed by others

References

  1. Lowenstam, H. A. & Weiner, S. On Biomineralisation (Oxford Univ. Press, New York, 1989).

    Google Scholar 

  2. Sundar, V. C., Yablon, A. D., Grazul, J. L., Ilan, M. & Aizenberg, J. Fibre-optical features of a glass sponge. Nature 424, 899–900 (2003).

    Article  CAS  Google Scholar 

  3. Politi, Y., Arad, T., Klein, E., Weiner, S. & Addadi, L. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 306, 1161–1164 (2004).

    Article  CAS  Google Scholar 

  4. Aizenberg, J. & Hendlen, G. Designing efficient microlens arrays: Lessons from Nature. J. Mater. Chem. 14, 2066–2072 (2004).

    Article  CAS  Google Scholar 

  5. Aizenberg, J. et al. Skeleton of Euplectella sp.: Structural hierarchy from the nanoscale to the macroscale. Science 309, 275–278 (2005).

    Article  CAS  Google Scholar 

  6. Aizenberg, J., Sundar, V. C., Yablon, A. D., Weaver, J. C. & Chen, G. Biological glass fibers: Correlation between optical and structural properties. Proc. Natl Acad. Sci. USA 101, 3358–3363 (2004).

    Article  CAS  Google Scholar 

  7. Mann, S. Biomineralization. Principles and Concepts in Bioinorganic Materials Chemistry (Oxford Univ. Press, Oxford, 2001).

    Google Scholar 

  8. Dujardin, E. & Mann, S. Bio-inspired materials chemistry. Adv. Mater. 14, 775–788 (2002).

    Article  CAS  Google Scholar 

  9. Yang, H., Coombs, N. & Ozin, G. A. Morphogenesis of shapes and surface patterns in mesoporous silica. Nature 386, 692–695 (1997).

    Article  CAS  Google Scholar 

  10. Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide–amphiphile nanofibers. Science 294, 1684–1688 (2001).

    Article  CAS  Google Scholar 

  11. Sanchez, C., Arribat, H. & Giraud-Guille, M. M. Biomimetism and bioinspiration as tools for the design of innovative materials systems. Nature Mater. 4, 277–288 (2005).

    Article  CAS  Google Scholar 

  12. Woesz, A. et al. Micromechanical properties of biological silica skeletons of deep-sea sponges. J. Mater. Res. 21, 2068–2078 (2006).

    Article  CAS  Google Scholar 

  13. Cha, J. N. et al. Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc. Natl Acad. Sci. USA 96, 361–365 (1999).

    Article  CAS  Google Scholar 

  14. Kröger, N., Lorenz, S., Brunner, E. & Sumper, M. Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 298, 584–586 (2002).

    Article  Google Scholar 

  15. Hukkamaki, J. & Pakkanen, T. T. Amorphous silica materials prepared by neutral templating route using amine-terminated templates. Micro. Meso. Mater. 65, 189–196 (2003).

    Article  CAS  Google Scholar 

  16. Van Bommel, K. J. C. & Shinkai, S. Silica transcription in the absence of a solution catalyst: The surface mechanism. Langmuir 18, 4544–4548 (2002).

    Article  CAS  Google Scholar 

  17. Shimizu, T., Masuda, M. & Minamikawa, H. Supramolecular nanotube architectures based on amphiphilic molecules. Chem. Rev. 105, 1401–1443 (2005).

    Article  CAS  Google Scholar 

  18. Schroder, H. C. et al. Co-expression and functional interaction of silicatein with galectin—Matrix-guided formation of siliceous spicules in the marine demosponge Suberites domuncula. J. Biol. Chem. 281, 12001–12009 (2006).

    Article  Google Scholar 

  19. Schroder, H. C. et al. Apposition of silica lamellae during growth of spicules in the demosponge Suberites domuncula: Biological/biochemical studies and chemical/biomimetical confirmation. J. Struct. Biol. (in the press).

  20. Valéry, C. et al. Biomimetic organization: Octapeptide self-assembly into nanotubes of viral capsid-like dimension. Proc. Natl Acad. Sci. USA 100, 10258 (2003).

    Article  Google Scholar 

  21. Valéry, C. et al. Self-association process of a peptide in solution: From beta-sheet filaments to large embedded nanotubes. Biophys. J. 86, 2484 (2004).

    Article  Google Scholar 

  22. Lehn, J.-M. Supramolecular Chemistry: Concepts and Perspectives (VCH, Weinheim, 1995).

    Book  Google Scholar 

  23. Lesaint, C., Lebeau, B., Marichal, C., Patarin, J. & Zana, R. Fluorescence probing investigation of the mechanism of formation of MSU-type mesoporous silica prepared in fluoride medium. Langmuir 21, 8923–8929 (2005).

    Article  CAS  Google Scholar 

  24. Israelachvili, J. Intramolecular and Surface Forces 2nd edn (Academic, San Diego, 1992).

    Google Scholar 

  25. Brinker, C. J. & Scherer, G. W. Sol–Gel Science. The Physics and Chemistry of Sol–Gel Processing (Academic, New York, 1990).

    Google Scholar 

  26. Ji, Q. et al. Direct sol–gel replication without catalyst in an aqueous gel system: From a lipid nanotube with a single bilayer wall to a uniform silica hollow cylinder with an ultrathin wall. Chem. Mater. 16, 250–254 (2004).

    Article  CAS  Google Scholar 

  27. Ji, Q., Iwaura, R. & Shimizu, T. Controlling wall thickness of silica nanotubes within 4-nm precision. Chem. Lett. 33, 504–505 (2004).

    Article  CAS  Google Scholar 

  28. Adachi, M., Harada, T. & Harada, M. Formation of huge length silica nanotubes by a templating mechanism in the laurylamine/tetraethoxysilane system. Langmuir 15, 7097–7100 (1999).

    Article  CAS  Google Scholar 

  29. Uriz, M. J., Turon, X., Becerro, M. A. & Agell, G. Siliceous spicules and skeleton frameworks in sponges: Origin, diversity, ultrastructural patterns and biological functions. Microsc. Res. Technol. 62, 279–299 (2003).

    Article  CAS  Google Scholar 

  30. Croce, G. et al. Structural characterization of siliceous spicules from marine sponges. Biophys. J. 86, 526–534 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Beaufour-IPSEN is acknowledged for providing the peptide and European Synchrotron Radiation Facility (ESRF) for allocating beam time (SC801). We are thankful to T. Narayanan for her support during preliminary experiments on the ID02 beamline at the ESRF synchrotron. E. Henry is acknowledged for the capillary picture. This work was supported by the Centre National de la Recherche Scientifique (AC Nanosciences–Nanotechnologies), by a research ministry fellowship (E.P.).

Author information

Authors and Affiliations

Authors

Contributions

F.A. designed the research, with additional contributions from E.D. and M.P. C.V., V.M.-A., M.P. and F.A. initiated the project. E.P., E.D. and A.C. performed TEM experiments. E.P., T.W., A.R. and F.A. performed SAXS experiments. E.P. and A.M. performed Raman experiments. E.P., E.D., M.P. and F.A. analysed data and wrote the paper.

Corresponding author

Correspondence to Franck Artzner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information and figures S1-S5 (PDF 139 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pouget, E., Dujardin, E., Cavalier, A. et al. Hierarchical architectures by synergy between dynamical template self-assembly and biomineralization. Nature Mater 6, 434–439 (2007). https://doi.org/10.1038/nmat1912

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1912

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing