Letter | Published:

Hierarchical architectures by synergy between dynamical template self-assembly and biomineralization

Nature Materials volume 6, pages 434439 (2007) | Download Citation

Subjects

Abstract

Diatoms, shells, bones and teeth are exquisite examples of well-defined structures, arranged from nanometre to macroscopic length scale, produced by natural biomineralization using organic templates to control the growth of the inorganic phase1,2,3,4,5,6. Although strategies mimicking Nature have partially succeeded in synthesizing human-designed bio-inorganic composite materials7,8,9,10, our limited understanding of fundamental mechanisms has so far kept the level of hierarchical complexity found in biological organisms out of the chemists’ reach11. In this letter, we report on the synthesis of unprecedented double-walled silica nanotubes with monodisperse diameters that self-organize into highly ordered centimetre-sized fibres. A unique synergistic growth mechanism is elucidated by the combination of light and electron microscopy, synchrotron X-ray diffuse scattering and Raman spectroscopy. Following this growth mechanism, macroscopic bundles of nanotubules result from the kinetic cross-coupling of two molecular processes: a dynamical supramolecular self-assembly and a stabilizing silica mineralization. The feedback actions between the template growth and the inorganic deposition are driven by a mutual electrostatic neutralization. This ‘dynamical template’ concept can be further generalized as a rational preparation scheme for materials with well-defined multiscale architectures and also as a fundamental mechanism for growth processes in biological systems.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & On Biomineralisation (Oxford Univ. Press, New York, 1989).

  2. 2.

    , , , & Fibre-optical features of a glass sponge. Nature 424, 899–900 (2003).

  3. 3.

    , , , & Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 306, 1161–1164 (2004).

  4. 4.

    & Designing efficient microlens arrays: Lessons from Nature. J. Mater. Chem. 14, 2066–2072 (2004).

  5. 5.

    et al. Skeleton of Euplectella sp.: Structural hierarchy from the nanoscale to the macroscale. Science 309, 275–278 (2005).

  6. 6.

    , , , & Biological glass fibers: Correlation between optical and structural properties. Proc. Natl Acad. Sci. USA 101, 3358–3363 (2004).

  7. 7.

    Biomineralization. Principles and Concepts in Bioinorganic Materials Chemistry (Oxford Univ. Press, Oxford, 2001).

  8. 8.

    & Bio-inspired materials chemistry. Adv. Mater. 14, 775–788 (2002).

  9. 9.

    , & Morphogenesis of shapes and surface patterns in mesoporous silica. Nature 386, 692–695 (1997).

  10. 10.

    , & Self-assembly and mineralization of peptide–amphiphile nanofibers. Science 294, 1684–1688 (2001).

  11. 11.

    , & Biomimetism and bioinspiration as tools for the design of innovative materials systems. Nature Mater. 4, 277–288 (2005).

  12. 12.

    et al. Micromechanical properties of biological silica skeletons of deep-sea sponges. J. Mater. Res. 21, 2068–2078 (2006).

  13. 13.

    et al. Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc. Natl Acad. Sci. USA 96, 361–365 (1999).

  14. 14.

    , , & Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 298, 584–586 (2002).

  15. 15.

    & Amorphous silica materials prepared by neutral templating route using amine-terminated templates. Micro. Meso. Mater. 65, 189–196 (2003).

  16. 16.

    & Silica transcription in the absence of a solution catalyst: The surface mechanism. Langmuir 18, 4544–4548 (2002).

  17. 17.

    , & Supramolecular nanotube architectures based on amphiphilic molecules. Chem. Rev. 105, 1401–1443 (2005).

  18. 18.

    et al. Co-expression and functional interaction of silicatein with galectin—Matrix-guided formation of siliceous spicules in the marine demosponge Suberites domuncula. J. Biol. Chem. 281, 12001–12009 (2006).

  19. 19.

    et al. Apposition of silica lamellae during growth of spicules in the demosponge Suberites domuncula: Biological/biochemical studies and chemical/biomimetical confirmation. J. Struct. Biol. (in the press).

  20. 20.

    et al. Biomimetic organization: Octapeptide self-assembly into nanotubes of viral capsid-like dimension. Proc. Natl Acad. Sci. USA 100, 10258 (2003).

  21. 21.

    et al. Self-association process of a peptide in solution: From beta-sheet filaments to large embedded nanotubes. Biophys. J. 86, 2484 (2004).

  22. 22.

    Supramolecular Chemistry: Concepts and Perspectives (VCH, Weinheim, 1995).

  23. 23.

    , , , & Fluorescence probing investigation of the mechanism of formation of MSU-type mesoporous silica prepared in fluoride medium. Langmuir 21, 8923–8929 (2005).

  24. 24.

    Intramolecular and Surface Forces 2nd edn (Academic, San Diego, 1992).

  25. 25.

    & Sol–Gel Science. The Physics and Chemistry of Sol–Gel Processing (Academic, New York, 1990).

  26. 26.

    et al. Direct sol–gel replication without catalyst in an aqueous gel system: From a lipid nanotube with a single bilayer wall to a uniform silica hollow cylinder with an ultrathin wall. Chem. Mater. 16, 250–254 (2004).

  27. 27.

    , & Controlling wall thickness of silica nanotubes within 4-nm precision. Chem. Lett. 33, 504–505 (2004).

  28. 28.

    , & Formation of huge length silica nanotubes by a templating mechanism in the laurylamine/tetraethoxysilane system. Langmuir 15, 7097–7100 (1999).

  29. 29.

    , , & Siliceous spicules and skeleton frameworks in sponges: Origin, diversity, ultrastructural patterns and biological functions. Microsc. Res. Technol. 62, 279–299 (2003).

  30. 30.

    et al. Structural characterization of siliceous spicules from marine sponges. Biophys. J. 86, 526–534 (2004).

Download references

Acknowledgements

Beaufour-IPSEN is acknowledged for providing the peptide and European Synchrotron Radiation Facility (ESRF) for allocating beam time (SC801). We are thankful to T. Narayanan for her support during preliminary experiments on the ID02 beamline at the ESRF synchrotron. E. Henry is acknowledged for the capillary picture. This work was supported by the Centre National de la Recherche Scientifique (AC Nanosciences–Nanotechnologies), by a research ministry fellowship (E.P.).

Author information

Affiliations

  1. Groupe Matière Condensée et Matériaux, UMR 6626 CNRS et Université Rennes 1, 263 Avenue du général Leclerc, 35042 Rennes Cedex, France

    • Emilie Pouget
    • , Alain Moreac
    • , Anne Renault
    •  & Franck Artzner
  2. NanoSciences Group, CEMES UPR 8011 CNRS, BP 94347, 29 r. J. Marvig, 31055 Toulouse Cedex 4, France

    • Erik Dujardin
  3. Interactions Cellulaires et Moléculaires, UMR 6026 CNRS et Université Rennes 1, 263 Avenue du général Leclerc, 35042 Rennes Cedex, France

    • Annie Cavalier
  4. Ipsen Pharma S.A., Ctra. Laurea Miro 395, 08980-Sant Feliu de Llobregat, Barcelona, Spain

    • Céline Valéry
  5. Sciences Chimiques de Rennes, UMR 6226 CNRS et Université Rennes 1, 263 Avenue du général Leclerc, 35042 Rennes Cedex, France

    • Valérie Marchi-Artzner
  6. ESRF, 6 rue Jules Horowitz, BP220, 38043 Grenoble Cedex, France

    • Thomas Weiss
  7. URA 2096, IBiTechS, CEA-Saclay, F-91191 Gif/Yvette, France

    • Maité Paternostre

Authors

  1. Search for Emilie Pouget in:

  2. Search for Erik Dujardin in:

  3. Search for Annie Cavalier in:

  4. Search for Alain Moreac in:

  5. Search for Céline Valéry in:

  6. Search for Valérie Marchi-Artzner in:

  7. Search for Thomas Weiss in:

  8. Search for Anne Renault in:

  9. Search for Maité Paternostre in:

  10. Search for Franck Artzner in:

Contributions

F.A. designed the research, with additional contributions from E.D. and M.P. C.V., V.M.-A., M.P. and F.A. initiated the project. E.P., E.D. and A.C. performed TEM experiments. E.P., T.W., A.R. and F.A. performed SAXS experiments. E.P. and A.M. performed Raman experiments. E.P., E.D., M.P. and F.A. analysed data and wrote the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Franck Artzner.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary information and figures S1-S5

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat1912

Further reading