Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Origin and control of high-temperature ferromagnetism in semiconductors

Abstract

The extensive experimental and computational search for multifunctional materials has resulted in the development of semiconductor and oxide systems, such as (Ga,Mn)N, (Zn,Cr)Te and HfO2, which exhibit surprisingly stable ferromagnetic signatures despite having a small or nominally zero concentration of magnetic elements. Here, we show that the ferromagnetism of (Zn,Cr)Te, and the associated magnetooptical and magnetotransport functionalities, are dominated by the formation of Cr-rich (Zn,Cr)Te metallic nanocrystals embedded in the Cr-poor (Zn,Cr)Te matrix. Importantly, the formation of these nanocrystals can be controlled by manipulating the charge state of the Cr ions during the epitaxy. The findings provide insight into the origin of ferromagnetism in a broad range of semiconductors and oxides, and indicate possible functionalities of these composite systems. Furthermore, they demonstrate a bottom-up method for self-organized nanostructure fabrication that is applicable to any system in which the charge state of a constituent depends on the Fermi-level position in the host semiconductor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TEM and transmission electron diffraction pattern of a Zn0.95Cr0.05Te:I film.
Figure 2: Comparison of Cr distributions in a series of Zn0.95Cr0.05Te films.
Figure 3: Characteristic temperatures of magnetic properties in the same series of Zn0.95Cr0.05Te films.
Figure 4: Different charge states of Cr in ZnTe and the energy for forming Cr pairs.

Similar content being viewed by others

References

  1. Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999).

    Article  CAS  Google Scholar 

  2. Dietl, T., Ohno, H., Matsukura, F., Cibert, J. & Ferrand, D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000).

    Article  CAS  Google Scholar 

  3. Sato, K. & Katayama-Yoshida, H. First principles materials design for semiconductor spintronics. Semicond. Sci. Technol. 17, 367–376 (2002).

    Article  CAS  Google Scholar 

  4. Sandratskii, L. M. & Bruno, P. Electronic structure, exchange interactions, and Curie temperature in diluted III-V magnetic semiconductors: (GaCr)As, (GaMn)As, (GaFe)As. Phys. Rev. B 67, 214402 (2003).

    Article  Google Scholar 

  5. Pearton, S. J. et al. Wide band gap ferromagnetic semiconductors and oxides. J. Appl. Phys. 93, 1–13 (2003).

    Article  CAS  Google Scholar 

  6. Fukumura, T., Toyosaki, H. & Yamada, Y. Magnetic oxide semiconductors. Semicond. Sci. Technol. 20, S103–S111 (2005).

    Article  CAS  Google Scholar 

  7. Liu, C., Yun, F. & Morkoç, H. Ferromagnetism of ZnO and GaN: A review. J. Mater. Sci. Mater. Electron. 16, 555–597 (2005).

    Article  CAS  Google Scholar 

  8. MacDonald, A. H., Schiffer, P. & Samarth, N. Ferromagnetic semiconductors: moving beyond (Ga,Mn)As. Nature Mater. 4, 195–202 (2005).

    Article  CAS  Google Scholar 

  9. Chambers, S. A. et al. Ferromagnetism in oxide semiconductors. Mater. Today 9, 28–35 (2006).

    Article  CAS  Google Scholar 

  10. Young, D. P. et al. High-temperature weak ferromagnetism in a low-density free-electron gas. Nature 397, 412–414 (1999).

    Article  CAS  Google Scholar 

  11. Makarova, T. L. et al. Magnetic carbon. Nature 413, 716–718 (2001).

    Article  CAS  Google Scholar 

  12. Venkatesan, M., Fitzgerald, C. B. & Coey, J. M. D. Unexpected magnetism in a dielectric oxide. Nature 430, 630 (2004).

    Article  CAS  Google Scholar 

  13. Sonoda, S., Shimizu, S., Sasaki, T., Yamamoto, Y. & Hori, H. Molecular beam epitaxy of wurtzite (Ga,Mn)N films on sapphire (0001) showing the ferromagnetic behaviour at room temperature. J. Cryst. Growth 237–239, 1358–1362 (2002).

    Article  Google Scholar 

  14. Sarigiannidou, E. et al. Intrinsic ferromagnetism in wurtzite (Ga,Mn)N semiconductor. Phys. Rev. B 74, 041306(R) (2006).

    Article  Google Scholar 

  15. Zając, M. et al. Paramagnetism and antiferromagnetic d–d coupling in GaMnN magnetic semiconductor. Appl. Phys. Lett. 79, 2432–2434 (2001).

    Article  Google Scholar 

  16. Kronik, L., Jain, M. & Chelikowsky, J. R. Electronic structure and spin polarization of MnxGa1−xN. Phys. Rev. B 66, 041203 (R) (2002).

    Article  Google Scholar 

  17. Mahadevan, P. & Zunger, A. Trends in ferromagnetism, hole localization, and acceptor level depth for Mn substitution in GaN, GaP, GaAs, and GaSb. Appl. Phys. Lett. 85, 2860–2862 (2004).

    Article  CAS  Google Scholar 

  18. Bergqvist, L. et al. Magnetic percolation in diluted magnetic semiconductors. Phys. Rev. Lett. 93, 137202 (2004).

    Article  CAS  Google Scholar 

  19. Sato, K., Schweika, W., Dederichs, P. H. & Katayama-Yoshida, H. Low-temperature ferromagnetism in (Ga,Mn)N: ab initio calculations. Phys. Rev. B 70, 201202(R) (2004).

    Article  Google Scholar 

  20. Schulthess, T. C., Temmerman, W. M., Szotek, Z., Butler, W. H. & Stocks, G. M. Electronic structure and exchange coupling of Mn impurities in III–V semiconductors. Nature Mater. 4, 838–844 (2005).

    Article  CAS  Google Scholar 

  21. Ueda, K., Tabata, H. & Kawai, T. Magnetic and electric properties of transition-metal-doped ZnO films. Appl. Phys. Lett. 79, 988–990 (2001).

    Article  CAS  Google Scholar 

  22. Kittilstved, K. R., Norberg, N. S. & Gamelin, D. R. Chemical manipulation of high-TC ferromagnetism in ZnO diluted magnetic semiconductors. Phys. Rev. Lett. 94, 147209 (2005).

    Article  Google Scholar 

  23. Spaldin, N. A. Search for ferromagnetism in transition-metal-doped piezoelectric ZnO. Phys. Rev. B 69, 125201 (2004).

    Article  Google Scholar 

  24. Dietl, T. & Spałek, J. Effect of fluctuations of magnetization on the bound magnetic polaron: Comparison with experiment. Phys. Rev. Lett. 48, 355–358 (1982).

    Article  CAS  Google Scholar 

  25. Saito, H., Zayets, V., Yamagata, S. & Ando, K. Room-temperature ferromagnetism in a II-VI diluted magnetic semiconductor Zn1−xCrxTe. Phys. Rev. Lett. 90, 207202 (2003).

    Article  CAS  Google Scholar 

  26. Fukushima, T., Sato, K., Katayama-Yoshida, H. & Dederichs, P. H. Theoretical prediction of Curie temperature in (Zn,Cr)S, (Zn,Cr)Se and (Zn,Cr)Te by first principles calculations. Jpn. J. Appl. Phys. 43, L1416–L1418 (2004).

    Article  CAS  Google Scholar 

  27. Ando, K. Seeking room-temperature ferromagnetic semiconductors. Science 312, 1883–1885 (2006).

    Article  CAS  Google Scholar 

  28. Karczewski, G. et al. Ferromagnetism in (Zn,Cr)Se layers grown by molecular beam epitaxy. J. Supercond./Novel Magnetism 16, 55–58 (2003).

    Article  CAS  Google Scholar 

  29. Ozaki, N. et al. Suppression of ferromagnetism due to hole doping in Zn1−xCrxTe grown by molecular beam epitaxy. Appl. Phys. Lett. 87, 192116 (2005).

    Article  Google Scholar 

  30. Ozaki, N. et al. Significant enhancement of ferromagnetism in Zn1−xCrxTe doped with iodine as an n-type dopant. Phys. Rev. Lett. 97, 037201 (2006).

    Article  Google Scholar 

  31. Reed, M. J. et al. Effect of doping on the magnetic properties of GaMnN: Fermi level engineering. Appl. Phys. Lett. 86, 102504 (2005).

    Article  Google Scholar 

  32. Kane, M. H. et al. Correlation of the structural and ferromagnetic properties of Ga1−xMnxN grown by metalorganic chemical vapor deposition. J. Cryst. Growth 287, 591–595 (2006).

    Article  CAS  Google Scholar 

  33. Dietl, T. Self-organized growth controlled by charge states of magnetic impurities. Nature Mater. 5, 673 (2006).

    Article  CAS  Google Scholar 

  34. Godlewski, M. & Kamińska, M. The chromium impurity photogeneration transitions in ZnS, ZnSe and ZnTe. J. Phys. C 13, 6537–6545 (1980).

    Article  CAS  Google Scholar 

  35. Dziesiaty, J. et al. The chromium impurity in ZnTe: Changes of the charge state detected by optical and EPR spectroscopy. Z. Phys. Chem. 201, S63–S73 (1997).

    Article  Google Scholar 

  36. Baron, T., Saminadayar, K. & Magnea, N. Nitrogen doping of Te-based II–VI compounds during growth by molecular beam epitaxy. J. Appl. Phys. 83, 1354–1370 (1998).

    Article  CAS  Google Scholar 

  37. Sreenivasan, M. G. et al. Zinc-blende structure of CrTe epilayers grown on GaAs. IEEE Trans. Magn. 42, 2691–2693 (2006).

    Article  CAS  Google Scholar 

  38. Shinde, S. R. et al. Co-occurrence of superparamagnetism and anomalous Hall effect in highly reduced cobalt-doped rutile TiO2−δ films. Phys. Rev. Lett. 92, 166601 (2004).

    Article  CAS  Google Scholar 

  39. Fukushima, T., Sato, K., Katayama-Yoshida, H. & Dederichs, P. H. Ab initio study of spinodal decomposition in (Zn,Cr)Te. Phys. Status Solidi A 203, 2751–2755 (2006).

    Article  CAS  Google Scholar 

  40. Ye, L.-H. & Freeman, A. J. Defect compensation, clustering, and magnetism in Cr-doped anatase TiO2 . Phys. Rev. B 73, 081304(R) (2006).

    Article  Google Scholar 

  41. Osuch, K., Lombardi, E. B. & Adamowicz, L. Palladium in GaN: A 4d metal ordering ferromagnetically in a semiconductor. Phys. Rev. B 71, 165213 (2005).

    Article  Google Scholar 

  42. Yokoyama, M., Yamaguchi, H., Ogawa, T. & Tanaka, M. Zinc-blende-type MnAs nanoclusters embedded in GaAs. J. Appl. Phys. 97, 10D317 (2005).

    Article  Google Scholar 

  43. Martinez-Criado, G. et al. Mn-rich clusters in GaN: Hexagonal or cubic symmetry? Appl. Phys. Lett. 86, 131927 (2005).

    Article  Google Scholar 

  44. Gu, L. et al. Characterization of Al(Cr)N and Ga(Cr)N diluted magnetic semiconductors. J. Magn. Magn. Mater. 290–291, 1395–1397 (2005).

    Article  Google Scholar 

  45. Jamet, M. et al. High-Curie-temperature ferromagnetism in self-organized Ge1−xMnx nanocolumns. Nature Mater. 5, 653–659 (2006).

    Article  CAS  Google Scholar 

  46. Bougeard, D., Ahlers, S., Trampert, A., Sircar, N. & Abstreiter, G. Clustering in a precipitate-free GeMn magnetic semiconductor. Phys. Rev. Lett. 97, 237202 (2006).

    Article  CAS  Google Scholar 

  47. Winkler, E., Zysler, R. D., Vasquez Mansilla, M. & Fiorani, D. Surface anisotropy effects in NiO nanoparticles. Phys. Rev. B 72, 132409 (2005).

    Article  Google Scholar 

  48. Makarova, T. L. et al. Magnetic carbon. Nature 413, 716–718 (2001); Retraction. Nature 440, 707 (2006).

    Article  CAS  Google Scholar 

  49. Abraham, D. W., Frank, M. M. & Guha, S. Absence of magnetism in hafnium oxide films. Appl. Phys. Lett. 87, 252502 (2005).

    Article  Google Scholar 

  50. Mitome, M. et al. Nanoanalysis by a high-resolution energy filtering transmission electron microscope. Microsc. Res. Tech. 63, 140–148 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Grant-in-Aids for Scientific Research (Basic Research (B) and Priority Areas), the 21st COE program of the University of Tsukuba and the ‘Nanotechnology Support Project’ of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. We would like to thank N. Ozaki, S. Marcet, T. Kumekawa, K. Kadowaki (University of Tsukuba), O. Eryu (Nagoya Institute of Technology) and T. Ohshima (Japan Atomic Energy Agency) for contributions and support in the experiments. T.D. thanks A. Bonanni, F. Matsukura, H. Ohno and M. Sawicki for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shinji Kuroda or Tomasz Dietl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1-S4 (PDF 244 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuroda, S., Nishizawa, N., Takita, K. et al. Origin and control of high-temperature ferromagnetism in semiconductors. Nature Mater 6, 440–446 (2007). https://doi.org/10.1038/nmat1910

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1910

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing