Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metallated conjugated polymers as a new avenue towards high-efficiency polymer solar cells

Abstract

Bulk heterojunction solar cells have been extensively studied owing to their great potential for cost-effective photovoltaic devices. Although recent advances resulted in the fabrication of poly(3-hexylthiophene) (P3HT)/fullerene derivative based solar cells with efficiencies in the range 4.4–5.0%, theoretical calculations predict that the development of novel donor materials with a lower bandgap is required to exceed the power-conversion efficiency of 10%. However, all of the lower bandgap polymers developed so far have failed to reach the efficiency of P3HT-based cells. To address this issue, we synthesized a soluble, intensely coloured platinum metallopolyyne with a low bandgap of 1.85 eV. The solar cells, containing metallopolyyne/fullerene derivative blends as the photoactive material, showed a power-conversion efficiency with an average of 4.1%, without annealing or the use of spacer layers needed to achieve comparable efficiency with P3HT. This clearly demonstrates the potential of metallated conjugated polymers for efficient photovoltaic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis scheme of low-bandgap organometallic diyne and polyyne and solid-state structure of M1.
Figure 2: Optical properties of L1, P1 and M1.
Figure 3: JV curves of solar cells with P1/PCBM (1:4) and P3HT/PCBM (1:4) active layers.
Figure 4: AFM images of P1/PCBM films for different blend compositions.
Figure 5: Comparison of P1/PCBM and P3HT/PCBM blends.
Figure 6: Performance of the P1/PCBM device for different illumination powers.

Similar content being viewed by others

References

  1. Kim, J. Y. et al. New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Adv. Mater. 18, 572–576 (2006).

    Article  CAS  Google Scholar 

  2. Reyes-Reyes, M., Kim, K. & Carroll, D. J. High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 blends. Appl. Phys. Lett. 87, 083506 (2005).

    Article  Google Scholar 

  3. Kim, Y. et al. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. Nature Mater. 5, 197–203 (2006).

    Article  CAS  Google Scholar 

  4. Li, G. et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Mater. 4, 864–868 (2005).

    Article  CAS  Google Scholar 

  5. Li, G., Shortriya, V., Yao, Y. & Yang, Y. Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene). J. Appl. Phys. 98, 043704 (2005).

    Article  Google Scholar 

  6. Kim, Y. et al. Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene. Appl. Phys. Lett. 86, 063502 (2006).

    Article  Google Scholar 

  7. Chirvase, D., Parisi, J., Hummelen, J. C. & Dyakonov, V. Influence of nanomorphology on the photovoltaic action of polymer–fullerene composites. Nanotechnology 15, 1317–1323 (2004).

    Article  CAS  Google Scholar 

  8. De Bettignies, R., Leroy, J., Firon, M. & Sentein, C. Accelerated lifetime measurements of P3HT:PCBM solar cells. Synth. Met. 156, 510–513 (2006).

    Article  CAS  Google Scholar 

  9. Mihailetchi, V. D. et al. Origin of the enhanced performance in poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester solar cells upon slow drying of the active layer. Appl. Phys. Lett. 89, 012107 (2006).

    Article  Google Scholar 

  10. Mihailetchi, V. D., Xie, H., de Boer, B., Koster, L. J. A. & Blom, P. W. M. Charge transport and photocurrent generation in poly(3-hexylthiophene):methanofullerene bulk heterojunction solar cells. Adv. Funct. Mater. 16, 699–708 (2006).

    Article  CAS  Google Scholar 

  11. Koster, L. J. A., Mihailetchi, V. D. & Bloom, P. W. Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells. Appl. Phys. Lett. 88, 093511 (2006).

    Article  Google Scholar 

  12. Scharber, M. C. et al. Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv. Mater. 18, 789–794 (2006).

    Article  CAS  Google Scholar 

  13. Wienk, M. M., Turbiez, M. G. R., Struijk, M. P., Fonrodona, M. & Janssen, R. Low-band gap poly(di-2-thienylthienopyrazine):fullerene solar cells. Appl. Phys. Lett. 88, 153511–153513 (2006).

    Article  Google Scholar 

  14. Wang, X. et al. Infrared photocurrent spectral response from plastic solar cell with low-band-gap polyfluorene and fullerene derivative. Appl. Phys. Lett. 85, 5081–5083 (2004).

    Article  CAS  Google Scholar 

  15. Wang, X. et al. Enhanced photocurrent spectral response in low-bandgap polyfluorene and C70-derivative-based solar cells. Adv. Funct. Mater. 15, 1665–1670 (2005).

    Article  CAS  Google Scholar 

  16. Xia, Y. et al. Novel random low-band-gap fluorene-based copolymers for deep red/near infrared light-emitting diodes and bulk heterojunction photovoltaic cells. Macromol. Chem. Phys. 207, 511–520 (2006).

    Article  CAS  Google Scholar 

  17. Zhou, Q. et al. Fluorene-based low band-gap copolymers for high performance photovoltaic devices. Appl. Phys. Lett. 84, 1653–1655 (2004).

    Article  CAS  Google Scholar 

  18. Svensson, M. et al. High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative. Adv. Mater. 15, 988–991 (2003).

    Article  CAS  Google Scholar 

  19. Shi, C., Yao, Y., Yang, Y. & Pei, Q. Regioregular copolymers of 3-alkoxythiophene and their photovoltaic application. J. Am. Chem. Soc. 128, 8980–8986 (2006).

    Article  CAS  Google Scholar 

  20. Zhang, F. et al. Low-bandgap alternating fluorene copolymer/methanofullerene heterojunctions in efficient near-infrared polymer solar cells. Adv. Mater. 18, 2169–2173 (2006).

    Article  CAS  Google Scholar 

  21. Hou, J. et al. Synthesis and photovoltaic properties of two-dimensional conjugated polythiophenes with bi(thienylenevinylene) side chains. J. Am. Chem. Soc. 128, 4911–4916 (2006).

    Article  CAS  Google Scholar 

  22. Mühlbacher, D. et al. High photovoltaic performance of a low-bandgap polymer. Adv. Mater. 18, 2884–2889 (2006).

    Article  Google Scholar 

  23. Zhang, F. et al. Polymer solar cells based on a low-bandgap fluorene copolymer and a fullerene derivative with photocurrent extended to 850 nm. Adv. Funct. Mater. 18, 2169–2173 (2006).

    Article  CAS  Google Scholar 

  24. Brabec, C. J. et al. A low-bandgap semiconducting polymer for photovoltaic devices and infrared emitting diodes. Adv. Funct. Mater. 12, 709–712 (2002).

    Article  CAS  Google Scholar 

  25. Shaheen, S. A. et al. Low band-gap polymeric photovoltaic devices. Synth. Met. 121, 1583–1584 (2001).

    Article  CAS  Google Scholar 

  26. Xue, J., Uchida, S., Rand, B. P. & Forrest, S. R. 4.2% Efficient organic photovoltaic cells with low series resistances. Appl. Phys. Lett. 84, 3013–3015 (2004).

    Article  CAS  Google Scholar 

  27. Robertson, N. Optimizing dyes for dye-sensitized solar cells. Angew. Chem. Int. Edn 45, 2338–2345 (2006).

    Article  CAS  Google Scholar 

  28. Chawdhury, N. et al. Evolution of lowest singlet and triplet excited states with number of thienyl rings in platinum poly-ynes. J. Chem. Phys. 110, 4963–4970 (1999).

    Article  CAS  Google Scholar 

  29. Köhler, A., Wittman, H. F., Friend, R. H., Khan, M. S. & Lewis, J. Enhanced photocurrent response in photocells made with platinum-poly-yne/C60 blends by photoinduced electron transfer. Synth. Met. 77, 147–150 (1996).

    Article  Google Scholar 

  30. Guo, F., Kim, Y.-G., Reynolds, J. R. & Schanze, K. S. Platinum-acetylide polymer based solar cells: Involvement of the triplet state for energy conversion. Chem. Commun. 2006, 1887–1889 (2006).

    Article  Google Scholar 

  31. Younus, M. et al. Synthesis, electrochemistry, and spectroscopy of blue platinum(II) polyynes and diynes. Angew. Chem. Int. Edn 37, 3036–3039 (1998).

    Article  CAS  Google Scholar 

  32. Wilson, J. S. et al. Spin-dependent exciton formation in π-conjugated compounds. Nature 413, 828–831 (2001).

    Article  CAS  Google Scholar 

  33. Manners, I. Putting metals into polymers. Science 294, 1664–1666 (2001).

    Article  CAS  Google Scholar 

  34. Long, N. J. & Williams, C. K. Metal alkynyl σ complexes: Synthesis and materials. Angew. Chem. Int. Edn 42, 2586–2617 (2003).

    Article  CAS  Google Scholar 

  35. Manners, I. Synthetic Metal-Containing Polymers (Wiley-VCH, Weinheim, 2004).

    Google Scholar 

  36. Köhler, A. & Beljonne, D. The singlet-triplet exchange energy in conjugated polymers. Adv. Funct. Mater. 14, 11–18 (2004).

    Article  Google Scholar 

  37. Wong, W.-Y. Recent advances in luminescent transition metal polyyne polymers. J. Inorg. Organomet. Polym. Mater. 15, 197–219 (2005).

    Article  CAS  Google Scholar 

  38. Karikomi, M., Kitamura, C., Tanaka, S. & Yamashita, Y. New narrow-bandgap polymer composed of benzobis(1,2,5-thiadiazole) and thiophenes. J. Am. Chem. Soc. 117, 6791–6792 (1995).

    Article  CAS  Google Scholar 

  39. Roncali, J. Synthetic principle for bandgap control in linear π-conjugated systems. Chem. Rev. 97, 173–205 (1997).

    Article  CAS  Google Scholar 

  40. Wong, W.-Y., Choi, K.-H., Lu, G.-L. & Shi, J.-X. Synthesis, redox and optical properties of low-bandgap platinum(II) polyynes with 9-dicyanomethylene-substituted fluorene acceptors. Macromol. Rapid Commun. 22, 461–465 (2001).

    Article  CAS  Google Scholar 

  41. Bredas, J. L. Theoretical design of polymeric conductors. Synth. Met. 17, 115–121 (1987).

    Article  CAS  Google Scholar 

  42. Köhler, A. et al. Donor-acceptor interactions in organometallic and organic poly-ynes. Synth. Met. 101, 246–247 (1999).

    Article  Google Scholar 

  43. Bredas, J. L., Heeger, A. J. & Wudi, F. Towards organic polymers with very small intrinsic band gaps. I. Electronic structure of polyisothianaphthene and derivatives. J. Chem. Phys. 85, 4673–4678 (1986).

    Article  CAS  Google Scholar 

  44. Havinga, E. E., Haeve, W. & Wynberg, H. Alternate donor-acceptor small-band-gap semiconducting polymers: Polysquaraines and polycroconaines. Synth. Met. 55–57, 299–306 (1993).

    Article  Google Scholar 

  45. Kertesz, M. & Lee, Y.-S. Electronic structures of small gap polymers. Synth. Met. 28, C545–C552 (1989).

    Article  CAS  Google Scholar 

  46. Wong, W.-Y. & Ho, C.-L. Di-, oligo- and polymetallaynes: Synthesis, photophysics, structures and applications. Coord. Chem. Rev. 250, 2627–2690 (2006).

    Article  CAS  Google Scholar 

  47. Wilson, J. S. et al. The energy gap law for triplet states in Pt-containing conjugated polymers and monomers. J. Am. Chem. Soc. 123, 9412–9417 (2001).

    Article  CAS  Google Scholar 

  48. Ashraf, R. S., Shahid, M., Klemm, E., Al-Ibrahim, M. & Sensfuss, S. Thienopyrazine-based low-bandgap poly(heteroaryleneethynylene)s for photovoltaic devices. Macromol. Rapid Commun. 27, 1454–1459 (2006).

    Article  CAS  Google Scholar 

  49. van Duren, J. K. J. et al. Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solar-cell performance. Adv. Funct. Mater. 14, 425–434 (2004).

    Article  CAS  Google Scholar 

  50. Mihailetchi, V. D. et al. Compositional dependence of the performance of poly(p-phenylene vinylene):methanofullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 15, 795–801 (2005).

    Article  CAS  Google Scholar 

  51. Shikler, R., Chiesa, M. & Friend, R. H. Photovoltaic performance and morphology of polyfluorene blends: The influence of phase separation evolution. Macromolecules 39, 5393–5399 (2006).

    Article  CAS  Google Scholar 

  52. Huang, J., Li, G. & Yang, Y. Influence of composition and heat-treatment on the charge transport properties of poly(3-hexylthiophene) and (6,6)-phenyl C61–butyric acid methyl ester blends. Appl. Phys. Lett. 87, 112105 (2005).

    Article  Google Scholar 

  53. von Hauff, E., Parisi, J. & Dyakonov, V. Investigations of the effects of tempering and composition dependence on charge carrier field effect mobilities in polymer and fullerene films and blends. J. Appl. Phys. 100, 043702 (2006).

    Article  Google Scholar 

  54. Shrotriya, V. et al. Accurate measurement and characterization of organic solar cells. Adv. Funct. Mater. 16, 2016–2023 (2006).

    Article  CAS  Google Scholar 

  55. Liu, Z. T., Kwok, H. S. & Djurišić, A. B. The optical functions of metal phthalocyanines. J. Phys. D 37, 678–688 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Grants Council of The Hong Kong Special Administrative Region, China (Project Numbers HKBU 2024/04P, HKU 7008/04P and 7010/05P). Financial support from the Hong Kong Baptist University, the Strategic Research Theme, University Development Fund, a Seed Funding Grant and an Outstanding Young Researcher Award (administrated by The University of Hong Kong) are also acknowledged. The authors would like to thank J. Gao from the University of Hong Kong for step-profiler thickness measurements, A. M. C. Ng for ellipsometry measurements and W. C. H. Choy and HKU-CAS Joint Laboratory on New Materials and C. M. Che for the use of a glove box for encapsulation. The authors would also like to thank R. de Bettignies and S. Guillerez from CEA-INES RDI, Laboratoire Composants Solaires, in Bourges Du Lac, France for independent verification of the solar-cell results.

Author information

Authors and Affiliations

Authors

Contributions

X.-Z.W. and Z.H. were responsible for the synthesis and chemical analyses, C.-T.Y., K.-Y.C., H.W. and C.S.-K.M. carried out film and device fabrication and characterization, C.-T.Y., C.S.-K.M., A.B.D., W.-K.C. and W.-Y.W. were responsible for data analysis and interpretation, W.-Y.W., A.B.D. and W.-K.C. were responsible for project planning and experiment design and W.-Y.W. and A.B.D. were responsible for manuscript preparation.

Corresponding authors

Correspondence to Wai-Yeung Wong or Aleksandra B. Djurišić.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information, figures S1-S6 and table S1 (PDF 305 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, WY., Wang, XZ., He, Z. et al. Metallated conjugated polymers as a new avenue towards high-efficiency polymer solar cells. Nature Mater 6, 521–527 (2007). https://doi.org/10.1038/nmat1909

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1909

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing