and enable the determination of the charge-carrier type responsible for molecular conduction (see Fig. 1). Thermoelectricity refers to the appearance of a voltage difference between the opposite sides of a material or a junction when they are at different temperatures. This effect arises because the electrons and holes not only carry electrical charge but also heat, and it is the physical basis behind thermocouple and heat-power conversion devices (such as solid-state heat engines and refrigerators). Inspired by the theoretical work of Paulsson and Datta¹¹, Reddy and co-workers used STM to measure the voltage drop induced by a temperature gradient across a metalmolecule-metal junction and deduced the junction Seebeck coefficient, S_{iunction} (the ratio between the voltage difference and temperature difference across the junction). Their work beautifully demonstrates that S_{junction} can be measured reproducibly all the way down to the single-molecule level. Significantly, the sign of S_{junction} enables the unambiguous determination of the dominant charge-carrier type (holes

passing through the HOMO in the case of the benzenedithiol family sandwiched between two gold electrodes), and the magnitude of S_{junction} provides information on the relative position of the HOMO with respect to the metal Fermi level. These insights can be obtained because S_{junction} is an intrinsic property of the metal-molecule-metal junction, yet is often insensitive to the exact details of the molecule-metal coupling. The report by Reddy et al. is the first example in which the carrier type and the HOMO position are measured experimentally in a molecular junction. As such, it represents an important development in the study of molecular charge transport. Moreover, the report suggests that a molecular junction could be the basis, not only for molecule-based electronics, but also for thermoelectric energy conversion devices.

Most importantly, the report by Reddy et al. demonstrates the need for new experimental techniques to address long-standing problems in molecular charge transport. Indeed, many questions pertinent to this important topic have

NEWS & VIEWS

yet to be tackled. These include the coupling between charge transport and molecular degrees of freedom, the effect of that coupling and of chemical functionality on *I*-V characteristics, and the understanding of the metalmolecule junction. The thermoelectric measurements reported by Reddy et al. add an important new tool for addressing these problems, but more experimental innovations in both fabrication and characterization of molecule-based devices will undoubtedly be required for the field to advance further.

References

- 1. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (Wiley, New York, 2001).
- 2. Stryer, L. Biochemistry (W. H. Freeman, New York, 1995).
- 3. Joachim, C. & Ratner, M. A. Proc. Natl Acad. Sci. USA
- 102, 8801-8808 (2005).
- 4. Tao, N. J. Nature Nanotech. 1, 173-181 (2006).
- 5. Moerner, W. E. & Orrit, M. Science 283, 1670-1676 (1999).
- 6. Reddy, P., Jang, S.-Y., Segalman, R. & Majumdar, A. Science 315, 1568-1571 (2007).
- 7. Park, H. et al. Nature 407, 57-60 (2000).
- 8. Kubatkin, S. et al. Nature 425, 698-701 (2003).
- 9. Dadosh, T. et al. Nature 436, 677-680 (2005).
- 10. Yu, L. H. et al. Phys. Rev. Lett. 93, 266802 (2004).
- 11. Paulsson, M. & Datta, S. Phys. Rev. B 67, 241403R (2003).

MATERIAL WITNESS Proof by construction

It's seldom noted that buildings are one of the most important items on the climate agenda. In 1990, the construction and use of residential, commercial and institutional buildings was responsible for about one-third of global energy use and its associated carbon emissions. In developed nations, buildings account for 40 per cent of total energy consumption and 60 per cent of electricity use. Some projections of energy use in the buildings sector show a doubling between 1990 and 2020; aggressive adoption of energyefficient technologies could reduce this growth to just 36 per cent.

Much of the focus on making buildings greener has been on energyefficiency: better insulation, low-energy lighting and so forth. That makes sense, although it is disheartening to see traditional low-energy methods such as wind-catchers and ice cooling in the Middle East being replaced by energyhungry air-conditioning.

But it is sobering to discover the costs of construction alone in terms of energy and materials. As John Fernández of the Massachusetts Institute of Technology points out in a recent review (Science

315, 1807; 2007), 70 per cent by weight of materials use in developed nations is accounted for by the built environment, and 60 per cent of non-industrial waste comes from construction and demolition of buildings. And get this: 8 per cent of global CO₂ emissions come from concrete production alone.

So there are lots of good reasons to use new materials in buildings: potentially this could cut their energy consumption, reduce waste and increase their lifetimes. Fernández lists many of the attractive solutions that now exist, but he points out that historically materials innovation has been slow in building technology. It took six decades for commercialized PVC to become a construction material, and adoption of the glass-substitute ethylene tetrafluoroethylene has also been slow. Neither of these is perhaps the 'greenest' of materials, but this reticence in the building trade is general.

Why is that? Sometimes advanced materials are just not economical. 'Active' glazing, with electro-, photo- and thermochromic properties, offers lowenergy solutions but at often prohibitive cost. The same remains true for organic

light-emitting diodes. But one of the main obstacles is that designers and engineers fear the legal liability they face from using materials of unknown lifetime and performance. And neither the client nor the builder wants to pay for testing of unproven materials.

But where there are substantial potential benefits from the introduction of new materials, this seems a most unsatisfactory situation. Is it time for the construction industry to follow the lead of some energy companies in supporting blue-sky innovations that might help the environment?

Of course, sound materials use doesn't need to be high-tech. Large civic buildings are typically expected to last for 120-150 years today, but medieval churches made from stone, wood, metal and glass are still functional centuries later. True, they often need extensive restoration and maintenance; but they show that there is no reason, technical or aesthetic, why we should not sometimes aim to build for eternity.

Philip Ball