Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Strong isotropic flux pinning in solution-derived YBa2Cu3O7−x nanocomposite superconductor films

Abstract

Power applications of superconductors will be tremendously boosted if an effective method for magnetic flux immobilization is discovered. Here, we report the most efficient vortex-pinning mechanism reported so far which, in addition, is based on a low-cost chemical solution deposition technique. A dense array of defects in the superconducting matrix is induced in YBa2Cu3O7−x–BaZrO3 nanocomposites where BaZrO3 nanodots are randomly oriented. Non-coherent interfaces are the driving force for generating a new type of nanostructured superconductor. Angle-dependent critical-current measurements demonstrate that a strong and isotropic flux-pinning mechanism is extremely effective at high temperatures and high magnetic fields leading to high-temperature superconductors with record values of pinning force. The maximum vortex-pinning force achieved at 65 K, 78 GN m−3, is 500% higher than that of the best low-temperature NbTi superconductors at 4.2 K and so a great wealth of high-field applications will be possible at high temperatures.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Structural and microstructural characterization of YBCO/BZO nanocomposite films.
Figure 2: Magnetic-field dependence of the critical-current density and pinning force.
Figure 3: Anisotropy of the superconducting properties: critical-current density and irreversibility line.
Figure 4: Separation of isotropic from anisotropic and weak from strong contributions to the critical current density.
Figure 5: Vortex-pinning intensity magnetic phase diagram.

References

  1. Larbalestier, D. C., Gurevich, A., Feldmann, D. M. & Polyanskii, A. High-Tc superconducting materials for electric power applications. Nature 414, 368–377 (2001).

    CAS  Article  Google Scholar 

  2. Parans Paranthaman, M. & Izumi, T. High-performance YBCO-coated superconductor wires. Mater. Res. Soc. Bull. 29, 533–541 (2004).

    Article  Google Scholar 

  3. Dam, B. et al. Origin of high critical currents in YBa2Cu3O7−δ superconducting thin films. Nature 399, 439–442 (1999).

    CAS  Article  Google Scholar 

  4. Puig, T. et al. in Flux Pinning and AC Loss Studies on YBCO Coated Conductors (eds Parans Paranthaman, M. & Selvamanickam, V.) (Nova Science, New York, in the press).

  5. Joos, C., Warthmann, R. & Kronmuller, H. Pinning mechanism of vortices at antiphase boundaries in YBa2Cu3O7−d . Phys. Rev. B 61, 12433–12446 (2000).

    Article  Google Scholar 

  6. Van der Beek, C. J. et al. Strong pinning in high-temperature superconducting films. Phys. Rev. B 66, 024523 (2002).

    Article  Google Scholar 

  7. MacManus-Driscoll, J. L. et al. Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7−x+BaZrO3 . Nature Mater. 3, 439–443 (2004).

    CAS  Article  Google Scholar 

  8. Haugan, T., Barnes, P. N., Wheeler, R., Meisenkothen, F. & Sumption, M. Addition of nanoparticle dispersions to enhance flux pinning of the YBa2Cu3O7−x superconductor. Nature 430, 867–870 (2004).

    CAS  Article  Google Scholar 

  9. Kang, S. et al. High-performance high-Tc superconducting wires. Science 311, 1911–1914 (2006).

    CAS  Article  Google Scholar 

  10. Yamada, Y. et al. Epitaxial nanostructure and defects effective for pinning in (Y,RE)Ba2Cu3O7−x coated conductors. Appl. Phys. Lett. 87, 132502 (2005).

    Article  Google Scholar 

  11. Song, X. et al. Evidence for strong flux pinning by small, dense nanoprecipitates in a Sm-doped YBa2Cu3O7−x coated conductor. Appl. Phys. Lett. 88, 212508 (2006).

    Article  Google Scholar 

  12. Figueras, J. et al. The loss of vortex line tension sets an upper limit to the irreversibility line in YBa2Cu3O7 . Nature Phys. 2, 402–407 (2006).

    CAS  Article  Google Scholar 

  13. Civale, L. et al. Vortex confinement by columnar defects in YBa2Cu3O7 crystals: enhanced pinning at high fields and temperatures. Phys. Rev. Lett. 67, 648–651 (1991).

    CAS  Article  Google Scholar 

  14. Obradors, X. et al. Progress towards all-chemical superconducting YBa2Cu3O7−x coated conductors. Supercond. Sci. Technol. 19, S13–S26 (2006).

    CAS  Article  Google Scholar 

  15. Pomar, A. et al. All-chemical high-Jc YBa2Cu3O7 multilayers with SrTiO3 as cap layer. J. Mater. Res. 21, 1106–1116 (2006).

    CAS  Article  Google Scholar 

  16. Goyal, A. et al. Irradiation-free, columnar defects comprised of self-assembled nanodots and nanorods resulting in strongly enhanced flux-pinning in YBa2Cu3O7−δ films. Supercond. Sci. Technol. 18, 1533–1538 (2005).

    CAS  Article  Google Scholar 

  17. Hänisch, J., Cai, C., Hühne, R., Schultz, L. & Holzapfel, B. Formation of nanosized BaIrO3 precipitates and their contribution to flux pinning in Ir-doped YBa2Cu3O7−δ quasi-multilayers. Appl. Phys. Lett. 86, 122508 (2005).

    Article  Google Scholar 

  18. Puig, T. et al. Influence of growth conditions on the microstructure and critical currents of TFA-MOD YBa2Cu3O7 films. Supercond. Sci. Technol. 18, 1141–1150 (2005).

    CAS  Article  Google Scholar 

  19. Bals, S. et al. Transmission electron microscopy on interface engineered superconducting thin films. IEEE Trans. Appl. Supercond. 13, 2834–2837 (2003).

    CAS  Article  Google Scholar 

  20. Haage, T. et al. Transport properties and flux pinning by self-organization in YBa2Cu3O7 films on vicinal SrTiO3 (001). Phys. Rev. B 56, 8404–8418 (1997).

    CAS  Article  Google Scholar 

  21. Berenov, A. et al. Microstructural characterization of YBa2Cu3O7−δ thick films grown at very high rates and high temperatures by pulsed laser deposition. J. Mater. Res. 18, 956–964 (2003).

    CAS  Article  Google Scholar 

  22. Jiang, H. G., Rühle, M. & Lavernia, E. J. On the applicability of the x-ray diffraction line profile analysis in extracting grain size and microstrain in nanocrystalline materials. J. Mater. Res. 14, 549–559 (1999).

    CAS  Article  Google Scholar 

  23. Pomar, A., Gutiérrez, J., Palau, A., Puig, T. & Obradors, X. Porosity induced magnetic granularity in epitaxial YBa2Cu3O7 thin films. Phys. Rev. B 73, 214522 (2006).

    Article  Google Scholar 

  24. Coll, M. et al. Stress-induced spontaneous dewetting of heteroepitaxial YBa2Cu3O7 thin films. Phys. Rev. B 73, 075420 (2006).

    Article  Google Scholar 

  25. Zheng, H et al. Self-Assembled growth of BiFeO3–CoFe2O4 nanostructures. Adv. Mater. 18, 2747–2752 (2006).

    CAS  Article  Google Scholar 

  26. Xie, Q., Madhukar, A., Chen, P. & Kobayashi, N. P. Vertically self-organized InAs quantum box islands on GaAs(100). Phys. Rev. Lett. 75, 2542–2545 (1995).

    CAS  Article  Google Scholar 

  27. Thomson, C. V. Structure evolution during processing of polycrystalline films. Annu. Rev. Mater. Sci. 30, 159–190 (2000).

    Article  Google Scholar 

  28. Sutton, A. & Balluffi, R. Interfaces in Crystalline Materials (Oxford Univ. Press, Oxford, 1996).

    Google Scholar 

  29. Yoshizumi, M., Seleznev, I. & Cima, M. J. Reactions of oxyfluoride precursors for the preparation of barium yttrium cuprate films. Physica C 403, 191–199 (2004).

    CAS  Article  Google Scholar 

  30. Gázquez, J. et al. Precursor evolution and nucleation mechanism of YBa2Cu3Ox films by TFA metal-organic decomposition. Chem. Mater. 18, 6211–6219 (2006).

    Article  Google Scholar 

  31. Moshnyaga, V. et al. Structural phase transition at the percolation threshold in epitaxial (La0.7Ca0.3MnO3)1−x:(MgO)x nanocomposite films. Nature Mater. 2, 247–252 (2003).

    CAS  Article  Google Scholar 

  32. Wan, J. G. et al. Magnetoelectric CoFe2O4–Pb(Zr,Ti)O3 composite thin films derived by a sol-gel process. Appl. Phys. Lett. 86, 122501 (2005).

    Article  Google Scholar 

  33. Vucinic-Vasic, M. et al. Zn,Ni ferrite/NiO nanocomposite powder obtained from acetylacetonato complexes. Nanotechnology 17, 4877–4884 (2006).

    CAS  Article  Google Scholar 

  34. Meingast, C. & Larbalestier, D. Quantitative description of a very high critical density Nb-Ti superconductor during its final optimization strain. II Flux pinning mechanisms. J. Appl. Phys. 66, 5971–5083 (1989).

    CAS  Article  Google Scholar 

  35. Miura, M. et al. Addition of low-Tc nanoparticles dispersions to enhance flux pinning of Sm1+xBa2−xCu3Oy thin films. Physica C 445–448, 643–647 (2006).

    Article  Google Scholar 

  36. Foltyn, S. & Civale, L. Understanding and pushing the limits of critical current in coated conductors. Ann. Peer Rev. US Supercond. Program Electric Syst. (2006) (www.energetics.com/supercon06).

  37. Blatter, G., Geshkenbein, V. B. & Larkin, A. I. From isotropic to anisotropic superconductors: a scaling approach. Phys. Rev. Lett. 68, 875–879 (1992).

    CAS  Article  Google Scholar 

  38. Civale, L. et al. Angular-dependent vortex pinning mechanisms in YBa2Cu3O7 coated conductors and thin films. Appl. Phys. Lett. 84, 2121–2123 (2004).

    CAS  Article  Google Scholar 

  39. Schilling, A., Welp, U., Kwok, W. K. & Crabtree, G. W. Vortex-lattice melting in untwinned YBa2Cu3O7−δ for Hc. Phys. Rev. B 65, 054505 (2002).

    Article  Google Scholar 

  40. Puig, T. & Obradors, X. Anisotropic vortex plasticity in the liquid state of YBa2Cu3O7: Evidence for quenched c-axis vortex correlation length. Phys. Rev. Lett. 84, 1571–1574 (2000).

    CAS  Article  Google Scholar 

  41. Gutierrez, J., Puig, T. & Obradors, X. Anisotropy and strength of vortex pinning centers in YBa2Cu3O7−x coated conductors. Appl. Phys. Lett. (in the press).

  42. Blatter, G., Feigelman, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994).

    CAS  Article  Google Scholar 

  43. Nelson, D. R. & Vinokur, V. M. Boson localization and correlated pinning of superconducting vortex arrays. Phys. Rev. B 48, 13060–13097 (1993).

    CAS  Article  Google Scholar 

  44. Plain, J., Puig, T., Sandiumenge, F., Obradors, X. & Rabier, J. Microstructural influence on critical currents and irreversibility line in melt-textured YBa2Cu3O7−δ reannealed at high oxygen pressure. Phys. Rev. B 65, 104526 (2002).

    Article  Google Scholar 

  45. Kim, S. I. et al. Mechanisms of weak thickness dependence of the critical current density in strong-pinning ex situ metal-organic-deposition-route YBa2Cu3O7 coated conductors. Supercond. Sci. Technol. 19, 968–979 (2006).

    CAS  Article  Google Scholar 

  46. Palau, A. et al. Crossover between channeling and pinning at twin boundaries in YBa2Cu3O7 thin films. Phys. Rev. Lett. 97, 257002 (2006).

    CAS  Article  Google Scholar 

  47. Ijaduola, A. O. et al. Critical currents of ex situ YBa2Cu3O7−δ thin films on rolling assisted biaxially textured substrates: Thickness, field, and temperature dependencies. Phys. Rev. B 73, 134502 (2006).

    Article  Google Scholar 

  48. Romà, N. et al. Acid anhydrides: A simple route to highly pure organometallic solutions for superconducting films. Supercond. Sci. Technol. 19, 521–527 (2006).

    Article  Google Scholar 

  49. Zalamova, K. et al. Smooth stress relief of trifluoroacetate metal-organic solutions for YBa2Cu3O7 film growth. Chem. Mater. 18, 5897–5906 (2006).

    CAS  Article  Google Scholar 

  50. Kliem, H., Weyers, A. & Lijtzner, J. Self-field limited currents in ceramic YBaCuO. J. Appl. Phys. 69, 1534–1537 (1991).

    CAS  Article  Google Scholar 

  51. Sanchez, A. & Navau, C. Critical-current density from magnetization loops of finite high-Tc superconductors. Supercond. Sci. Technol. 14, 444–447 (2001).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from MEC (NANOARTIS, MAT2005-02047; NANOFUNCIONA, NAN2004-09133-CO3-01; FPU and RyC), Generalitat de Catalunya (Catalan Pla de Recerca SGR-0029 and CeRMAE), CSIC (PIF-CANNAMUS) and EU (HIPERCHEM, NMP4-CT2005-516858; SUPER3C, SES6-CT-2004-502615). The support of J. Santiso and C. Frontera in the X-ray diffraction analysis is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Obradors.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gutiérrez, J., Llordés, A., Gázquez, J. et al. Strong isotropic flux pinning in solution-derived YBa2Cu3O7−x nanocomposite superconductor films. Nature Mater 6, 367–373 (2007). https://doi.org/10.1038/nmat1893

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1893

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing