Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Towards multimaterial multifunctional fibres that see, hear, sense and communicate

Abstract

Virtually all electronic and optoelectronic devices necessitate a challenging assembly of conducting, semiconducting and insulating materials into specific geometries with low-scattering interfaces and microscopic feature dimensions. A variety of wafer-based processing approaches have been developed to address these requirements, which although successful are at the same time inherently restricted by the wafer size, its planar geometry and the complexity associated with sequential high-precision processing steps. In contrast, optical-fibre drawing from a macroscopic preformed rod is simpler and yields extended lengths of uniform fibres. Recently, a new family of fibres composed of conductors, semiconductors and insulators has emerged. These fibres share the basic device attributes of their traditional electronic and optoelectronic counterparts, yet are fabricated using conventional preform-based fibre-processing methods, yielding kilometres of functional fibre devices. Two complementary approaches towards realizing sophisticated functions are explored: on the single-fibre level, the integration of a multiplicity of functional components into one fibre, and on the multiple-fibre level, the assembly of large-scale two- and three-dimensional geometric constructs made of many fibres. When applied together these two approaches pave the way to multifunctional fabric systems.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Wavelength-scalable hollow-core PBG fibres.
Figure 2: Tunable external reflection microcavity PBG fibres.

Fig. 2a,b © 2005 OSA

Figure 3: Metal–semiconductor–insulator fibre devices.

Fig. 3c,d,e © 2006 WILEY

Figure 4: Self-monitoring hollow-core fibres.
Figure 5: Narrow-band photodetecting fibres.
Figure 6: Surface-emitting fibre lasers.

© 2006 OSA

Figure 7: Two- and three-dimensional optical and thermal fibre arrays.
Figure 8: Fibre-device integrated bundles produced by stacking and redrawing.

References

  1. Maurer, R. D. & Schultz, P. C. Fused silica optical waveguide. US patent 3,659,915 (1972).

  2. Keck, D. B., Maurer, R. D. & Schultz, P. C. On the ultimate lower limit of attenuation in glass optical waveguides. Appl. Phys. Lett. 22, 307–309 (1973).

    CAS  Google Scholar 

  3. Senior, J. M. Optical Fiber Communications: Principles and Practice (Prentice Hall, New Jersey, 1985).

    Google Scholar 

  4. Agrawal, G. P. Fiber-Optic Communication Systems 3rd edn (Wiley-Interscience, New York, 2002).

    Google Scholar 

  5. Marcuse, D. Theory of Dielectric Optical Waveguides (Academic, New York, 1974).

    Google Scholar 

  6. Ramaswami, R. & Sivarajan, K. N. Optical Networks: A Practical Perspective (Morgan Kaufmann, San Francisco, 1998).

    Google Scholar 

  7. Knight, J. C. et al. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549 (1996).

    CAS  Google Scholar 

  8. Birks, T. A., Knight, J. C. & Russell, P. S. Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997).

    CAS  Google Scholar 

  9. Cregan, R. F. et al. Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999).

    CAS  Google Scholar 

  10. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    CAS  Google Scholar 

  11. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

    CAS  Google Scholar 

  12. Joannopoulos, J. D., Meade, R. D. & Winn, J. N. Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, New Jersey, 1995).

    Google Scholar 

  13. Knight, J. C. Photonic crystal fibres. Nature 424, 847–851 (2003).

    CAS  Google Scholar 

  14. Russell, P. Photonic crystal fibers. Science 299, 358–362 (2003).

    CAS  Google Scholar 

  15. Nguyen, H. et al. A new slant on photonic crystal fibers. Opt. Express 12, 1528–1539 (2004).

    Google Scholar 

  16. Yeh, P., Yariv, A. & Marom, E. Theory of Bragg fiber. J. Opt. Soc. Am. 68, 1196–1201 (1978).

    Google Scholar 

  17. Winn, J. N. et al. Omnidirectional reflection from a one-dimensional photonic crystal. Opt. Lett. 23, 1573–1575 (1998).

    CAS  Google Scholar 

  18. Fink, Y. et al. A dielectric omnidirectional reflector. Science 282, 1679–1682 (1998).

    CAS  Google Scholar 

  19. Fink, Y. et al. Guiding optical light in air using an all-dielectric structure. J. Lightwave Technol. 17, 2039–2041 (1999).

    Google Scholar 

  20. Temelkuran, B. et al. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature 420, 650–653 (2002).

    CAS  Google Scholar 

  21. Hart, S. D. et al. External reflection from omnidirectional dielectric mirror fibers. Science 296, 510–513 (2002).

    CAS  Google Scholar 

  22. Benoit, G. et al. Static and dynamic properties of optical microcavities in photonic bandgap yarns. Adv. Mater. 15, 2053–2056 (2003).

    CAS  Google Scholar 

  23. Bayindir, M. et al. Metal-insulator-semiconductor optoelectronic fibres. Nature 431, 826–829 (2004).

    CAS  Google Scholar 

  24. Benoit, G. et al. Dynamic all-optical tuning of transverse resonant cavity modes in photonic bandgap fibers. Opt. Lett. 30, 1620–1622 (2005).

    Google Scholar 

  25. Shapira, O. et al. Surface-emitting fiber lasers. Opt. Express. 14, 3929–3935 (2006).

    Google Scholar 

  26. Bayindir, M. et al. Fiber photodetectors codrawn from conducting, semiconducting and insulating materials. Opt. Photon. News 15, 24 (2004).

    Google Scholar 

  27. Bayindir, M. et al. Integrated fibres for self-monitored optical transport. Nature Mater. 4, 820–825 (2005).

    CAS  Google Scholar 

  28. Bayindir, M. et al. Thermal-sensing fiber devices by multimaterial codrawing. Adv. Mater. 18, 845–849 (2006).

    CAS  Google Scholar 

  29. Abouraddy, A. F. et al. Large-scale optical-field measurements with geometric fibre constructs. Nature Mater. 5, 532–536 (2006).

    CAS  Google Scholar 

  30. Rayleigh, L. On the stability of jets. Proc. London. Math. Soc. 10, 4–13 (1878).

    Google Scholar 

  31. Rayleigh, L. On the capillary phenomena of jets. Proc. R. Soc. London 29, 71–97 (1879).

    Google Scholar 

  32. Rayleigh, L. On the instability of a cylinder of viscous liquid under capillary force. Phil. Mag. 34, 145–154 (1892).

    Google Scholar 

  33. Tomotika, S. On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proc. R. Soc. London A 150, 322–337 (1935).

    Google Scholar 

  34. Eggers, J. Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69, 865–929 (1997).

    CAS  Google Scholar 

  35. Hilton, A. R. Optical properties of chalcogenide glasses. J. Non-Cryst. Solids 2, 28–39 (1970).

    CAS  Google Scholar 

  36. Sanghera, J. S. & Aggarwal, I. D. Active and passive chalcogenide glass optical fibers for IR applications: A review. J. Non-Cryst. Solids. 257, 6–16 (1999).

    Google Scholar 

  37. Varshneya, A. K. Fundamentals of Inorganic Glasses (Academic, New York, 1994).

    Google Scholar 

  38. Borisova, Z. U. Glassy Semiconductors (Plenum, New York, 1981).

    Google Scholar 

  39. King, W. A., Clare, A. G. & Lacourse, W. C. Laboratory preparation of highly pure As2Se3 glass. J. Non-Cryst. Solids. 181, 231–237 (1995).

    CAS  Google Scholar 

  40. Seddon, A. B. Chalcogenide glasses - A review of their preparation, properties and applications. J. Non-Cryst. Solids. 184, 44–50 (1995).

    CAS  Google Scholar 

  41. Southworth, G. C. High frequency wave guides — general considerations and experimental results. Bell System Tech. J. 15, 284–309 (1936).

    Google Scholar 

  42. Warters, W. D. WT4 millimeter waveguide system - Introduction. Bell System Tech. J. 56, 1825–1827 (1977).

    Google Scholar 

  43. Alsberg, D. A., Bankert, J. C. & Hutchison, P. T. WT4-WT4a millimeter-wave transmission-system. Bell System Tech. J. 56, 1829–1848 (1977).

    Google Scholar 

  44. Mitra, P. P. & Stark, J. B. Nonlinear limits to the information capacity of optical fibre communications. Nature. 411, 1027–1030 (2001).

    CAS  Google Scholar 

  45. Verdaasdonk, R. M. & van Swol, C. F. P. Laser light delivery systems for medical applications. Phys. Med. Biol. 42, 869–894 (1997).

    CAS  Google Scholar 

  46. Renn, M. J. et al. Laser-guided atoms in hollow-core optical fibers. Phys. Rev. Lett. 75, 3253–3256 (1995).

    CAS  Google Scholar 

  47. Constant, E. et al. Optimizing high harmonic generation in absorbing gases: Model and experiment. Phys. Rev. Lett. 82, 1668–1671 (1999).

    CAS  Google Scholar 

  48. Schnurer, M. et al. Guiding and high-harmonic generation of sub-10-fs pulses in hollow-core fibers at 1015 W/cm2. Appl. Phys. B 67, 263–266 (1998).

    Google Scholar 

  49. Miyagi, M. & Kawakami, S. Design theory of dielectric-coated circular metallic waveguides for infrared transmission. J. Lightwave Technol. 2, 116–126 (1984).

    Google Scholar 

  50. Hongo, A. et al. Transmission of kilowatt-class CO2-laser light through dielectric-coated metallic hollow wave-guides for material processing. Appl. Opt. 31, 5114–5120 (1992).

    CAS  Google Scholar 

  51. Miyagi, M. & Nishida, S. A proposal of low-loss leaky wave-guide for submillimeter waves transmission. IEEE Trans. Microwave Theory. 28, 398–400 (1980).

    Google Scholar 

  52. Desterke, C. M., Bassett, I. M. & Street, A. G. Differential losses in Bragg fibers. J. Appl. Phys. 76, 680–688 (1994).

    Google Scholar 

  53. Kuriki, K. et al. Hollow multilayer photonic bandgap fibers for NIR applications. Opt. Express. 12, 1510–1517 (2004).

    CAS  Google Scholar 

  54. Harrington, J. A. A review of IR transmitting, hollow waveguides. Fiber Integrated Opt. 19, 211–227 (2000).

    CAS  Google Scholar 

  55. Dai, J. W. & Harrington, J. A. High-peak-power, pulsed CO2 laser light delivery by hollow glass waveguides. Appl. Opt. 36, 5072–5077 (1997).

    CAS  Google Scholar 

  56. Strong, M. S. & Jako, G. J. Laser surgery in larynx: Early clinical experience with continuous CO2-laser. Ann. Oto. Rhinol. Laryn. 81, 791–798 (1972).

    CAS  Google Scholar 

  57. Shapshay, S. M. & Beamis, J. F. Use of CO2-laser. Chest 95, 449–456 (1989)

    CAS  Google Scholar 

  58. Anastassiou, C. et al. Fibers deliver CO2 laser beams for medical applications. Photon. Spectra. 38, 108 (2004).

    Google Scholar 

  59. Holsinger, F. C. et al. Use of the photonic band gap fiber assembly CO2 laser system in head and neck surgical oncology. Laryngoscope 116, 1288–1290 (2006).

    Google Scholar 

  60. Devaiah, A. K. et al. Surgical utility of a new carbon dioxide laser fiber: Functional and histological study. Laryngoscope 115, 1463–1468 (2005).

    Google Scholar 

  61. Jacobson, A. S., Woo, P. & Shapshay, S. M. Emerging technology: Flexible CO2 laser waveguide. Otolaryn. Head Neck 135, 469–470 (2006).

    Google Scholar 

  62. Pfeiffer, G., Paesler, M. A. & Agarwal, S. C. Reversible photodarkening of amorphous arsenic chalcogens. J. Non-Cryst. Solids. 130, 111–143 (1991).

    CAS  Google Scholar 

  63. Shimakawa, K., et al. A model for the photostructural changes in amorphous chalcogenides. Phil. Mag. Lett. 77, 153–158 (1998).

    CAS  Google Scholar 

  64. Ntziachristos, V., Bremer, C. & Weissleder, R. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur. Radiol. 13, 195–208 (2003).

    Google Scholar 

  65. Koncar, V. Optical fiber fabric displays. Opt. Photon. News 16, 40–44 (2005).

    CAS  Google Scholar 

  66. Llyoyd, J. M. Thermal Imaging Systems (Plenum, New York, 1975).

    Google Scholar 

  67. Dereniak, E. L. & Boreman, G. D. Infrared Detectors and Systems (Wiley, New York, 1996).

    Google Scholar 

  68. Ahn, D. H. et al. A nonvolatile memory based on reversible phase changes between fcc and hcp. IEEE Electron Dev. Lett. 26, 286–288 (2005).

    CAS  Google Scholar 

  69. Liu, B. et al. Characteristics of chalcogenide nonvolatile memory nano-cell-element based on Sb2Te3 material. Microelectron. Eng. 82, 168–174 (2005).

    CAS  Google Scholar 

  70. Sun, Z. M., Zhou, J. & Ahuja, R. Structure of phase change materials for data storage. Phys. Rev. Lett. 96, 055507 (2006).

    Google Scholar 

  71. Lenz, G. et al. Large Kerr effect in bulk Se-based chalcogenide glasses. Opt. Lett. 25, 254–256 (2000).

    CAS  Google Scholar 

  72. Asobe, M. et al. 3rd-order nonlinear spectroscopy in As2S3 chalcogenide glass-fibers. J. Appl. Phys. 77, 5518–5523 (1995).

    CAS  Google Scholar 

  73. Spalter, S. et al. Strong self-phase modulation in planar chalcogenide glass waveguides. Opt. Lett. 27, 363–365 (2002).

    CAS  Google Scholar 

  74. Asobe, M. et al. laser-diode-driven ultrafast all-optical switching by using highly nonlinear chalcogenide glass-fiber. Opt. Lett. 18, 1056–1058 (1993).

    CAS  Google Scholar 

  75. Gopinath, J. T. et al. Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications. J. Appl. Phys. 96, 6931–6933 (2004).

    CAS  Google Scholar 

  76. Ranka, J. K., Windeler, R. S. & Stentz, A. J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25, 25–27 (2000).

    CAS  Google Scholar 

  77. Birks, T. A., Wadsworth, W. J. & Russell, P. S. Supercontinuum generation in tapered fibers. Opt. Lett. 25, 1415–1417 (2000).

    CAS  Google Scholar 

  78. Slusher, R. E. et al. Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers. J. Opt. Soc. Am. B 21, 1146–1155 (2004).

    CAS  Google Scholar 

  79. Ruan, Y. L. et al. Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices. Opt. Comm. 252, 39–45 (2005).

    CAS  Google Scholar 

  80. Johnson, S. G. et al. Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers. Opt. Express 9, 748–779 (2001).

    CAS  Google Scholar 

  81. Ibanescu, M. et al. Analysis of mode structure in hollow dielectric waveguide fibers. Phys. Rev. E 67, 046608 (2003).

    Google Scholar 

  82. Shapira, O. et al. Complete modal decomposition for optical waveguides. Phys. Rev. Lett. 94, 143902 (2005).

    Google Scholar 

Download references

Acknowledgements

The authors are indebted to John D. Joannopoulos for his support, dedication and vision without which the results reported would not have materialized. We thank S. Johnson, M. Soljacic, M. Ibanescu, J. Arnold, D. Deng, D. Saygin-Hinczewski and J-F. Viens. This work was supported by US Army ISN, ONR, AFRL, NSF, US DOE and DARPA. We also thank the RLE for its support. This work was also supported in part by the MRSEC Program of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Fink.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Abouraddy, A., Bayindir, M., Benoit, G. et al. Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nature Mater 6, 336–347 (2007). https://doi.org/10.1038/nmat1889

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1889

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing