Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures

Abstract

Magnetoelectric coupling1,2 between magnetic and electrical properties presents valuable degrees of freedom for applications. The two most promising scenarios are magnetic-field sensors3 that could replace low-temperature superconducting quantum interference devices, and electric-write magnetic-read memory devices that combine the best2 of ferroelectric and magnetic random-access memory. The former scenario requires magnetically induced continuous and reversible changes in electrical polarization. These are commonly observed, but the coupling constants thus obtained are invalid for data-storage applications, where the more difficult to achieve4,5 and rarely studied magnetic response to an electric field is required. Here, we demonstrate electrically induced giant, sharp and persistent magnetic changes (up to 2.3×10−7 s m−1) at a single epitaxial interface in ferromagnetic 40 nm La0.67Sr0.33MnO3 films on 0.5 mm ferroelectric BaTiO3 substrates. X-ray diffraction confirms strain coupling via ferroelastic non-180 BaTiO3 domains. Our findings are valid over a wide range of temperatures including room temperature, and should inspire further study with single epitaxial interfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Response of a ferromagnetic epitaxial LSMO film to structural phase transitions in the BTO substrate.
Figure 2: Ferroelectric domains in BTO.
Figure 3: Large sharp magnetic switching due to an applied electric field.
Figure 4: Electrically induced magnetic switching and magnetoelectric coupling strength.

Similar content being viewed by others

References

  1. Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D 38, R123–R152 (2005).

    Article  CAS  Google Scholar 

  2. Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).

    Article  CAS  Google Scholar 

  3. Dong, S., Li, J. F. & Viehland, D. Ultrahigh magnetic field sensitivity in laminates of Terfenol-D and Pb(Mg1/3Nb2/3)O3–PbTiO3 crystals. Appl. Phys. Lett. 83, 2265–2267 (2003).

    Article  CAS  Google Scholar 

  4. Astrov, D. N. The magnetoelectric effect in antiferromagnetics. Zh. Eksp. Teor. Fiz. 38, 984–985Sov. Phys. JETP 11, 708–709 (1960).

  5. Folen, V. J., Rado, G. T. & Stalder, E. W. Anisotropy of the magnetoelectric effect in Cr2O3 . Phys. Rev. Lett. 6, 607–608 (1961).

    Article  CAS  Google Scholar 

  6. Ryu, J., Vásquez Carazo, A., Uchino, K. & Kim, H.-E. Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites. Jpn. J. Appl. Phys. 40, 4948–4951 (2001).

    Article  CAS  Google Scholar 

  7. Hou, S. L. & Bloembergen, N. Paramagnetoelectric effects in NiSO4·6H2O. Phys. Rev. A 138, 1218–1226 (1965).

    Article  CAS  Google Scholar 

  8. Schmid, H. Multi-ferroic magnetoelectrics. Ferroelectrics 162, 665–685 (1994).

    CAS  Google Scholar 

  9. Lee, M. K. et al. Strain modification of epitaxial perovskite oxide thin films using structural transitions of ferroelectric BaTiO3 substrate. Appl. Phys. Lett. 77, 3547–3549 (2000).

    Article  CAS  Google Scholar 

  10. Brown, W. F. Jr, Hornreich, R. M. & Shtrikman, S. Upper bound on the magnetoelectric susceptibility. Phys. Rev. 168, 574–577 (1968).

    Article  Google Scholar 

  11. Ascher, E., Rieder, H., Schmid, H. & Stössel, H. Some properties of ferromagnetoelectric nickel-iodine boracite, Ni3B7O13I. J. Appl. Phys. 37, 1404–1405 (1966).

    Article  CAS  Google Scholar 

  12. Kimura, T. et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003).

    Article  CAS  Google Scholar 

  13. Hur, N. et al. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392–395 (2004).

    Article  CAS  Google Scholar 

  14. Ponomarev, B. K. et al. Magnetoelectric properties of some rare earth molybdates. Ferroelectrics 161, 43–48 (1994).

    Article  CAS  Google Scholar 

  15. van Suchtelen, J. Product properties: A new application of composite materials. Phil. Res. Rep. 27, 28–37 (1972).

    Google Scholar 

  16. Zavaliche, F. et al. Electric field-induced magnetization switching in epitaxial columnar nanostructures. Nano Lett. 5, 1793–1796 (2005).

    Article  CAS  Google Scholar 

  17. Bratkovsky, A. M. & Levanyuk, A. P. Smearing of phase transition due to a surface effect or a bulk inhomogeneity in ferroelectric nanostructures. Phys. Rev. Lett. 94, 107601 (2005).

    Article  CAS  Google Scholar 

  18. Dong, S., Zhai, J., Li, J. & Viehland, D. Near-ideal magnetoelectricity in high-permeability magnetostrictive/piezofiber laminates with a (2-1) connectivity. Appl. Phys. Lett. 89, 252904 (2006).

    Article  Google Scholar 

  19. Kay, H. F. & Vousden, P. Symmetry changes in barium titanate at low temperatures. Phil. Mag. 40, 1019–1040 (1949).

    Article  CAS  Google Scholar 

  20. Tsui, F., Smoak, M. C., Nath, T. K. & Eom, C. B. Strain-dependent magnetic phase diagram of epitaxial La0.67Sr0.33MnO3 thin films. Appl. Phys. Lett. 76, 2421–2423 (2000).

    Article  CAS  Google Scholar 

  21. Urushibara, A. et al. Insulator-metal transition and giant magnetoresistance in La1−xSrxMnO3 . Phys. Rev. B 51, 14103–14109 (1995).

    Article  CAS  Google Scholar 

  22. Mathur, N. D., Jo, M.-H., Evetts, J. E. & Blamire, M. G. Magnetic anisotropy of thin film La0.7Ca0.3MnO3 on untwinned paramagnetic NdGaO3 (001). J. Appl. Phys. 89, 3388–3392 (2001).

    Article  CAS  Google Scholar 

  23. Wada, S. et al. Enhanced piezoelectric property of barium titanate single crystals with engineered domain configurations. Jpn. J. Appl. Phys. 38, 5505–5511 (1999).

    Article  CAS  Google Scholar 

  24. Merz, W. J. The electrical and optical behaviour of BaTiO3 single domain crystals. Phys. Rev. 76, 1221–1225 (1949).

    Article  CAS  Google Scholar 

  25. Krishnan, A., Treacy, M. M. J., Bisher, M. E., Chandra, P. & Littlewood, P. B. Efficient switching and domain interlocking observed in polyaxial ferroelectrics. Integr. Ferroelectr. 43, 31–49 (2002).

    Article  CAS  Google Scholar 

  26. Shilo, D., Ravichandran, G. & Bhattacharya, K. Investigation of twin-wall structure at the nanometre scale using atomic force microscopy. Nature Mater. 3, 453–457 (2004).

    Article  CAS  Google Scholar 

  27. Fousek, J. & Brezina, B. Relaxation of 90 domain walls of BaTiO3 and their equation of motion. J. Phys. Soc. Jpn 19, 830–838 (1964).

    Article  CAS  Google Scholar 

  28. Ren, X. Large electric-field induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nature Mater. 3, 91–94 (2004).

    Article  CAS  Google Scholar 

  29. Schröder, K. Stress operated random access, high-speed magnetic memory. J. Appl. Phys. 53, 2759–2761 (1982).

    Article  Google Scholar 

  30. Burscu, E., Ravichandran, G. & Bhattacharya, K. Large strain electrostrictive actuation in barium titanate. Appl. Phys. Lett. 77, 1698–1700 (2000).

    Article  Google Scholar 

  31. Thiele, C. et al. Influence of strain on the magnetization and magnetoelectric effect in La0.7A0.3MnO3/PMN-PT(001) (A=Sr,Ca). Phys. Rev. B 75, 054408 (2007).

    Article  Google Scholar 

  32. Rhodes, R.G. Barium titanate twinning at low temperatures. Acta Crystallogr. 4, 105 (1951).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Cain, G. Catalan, C.-B. Eom, I. C. Infante, E. C. Israel, F. D. Morrison and D. Viehland for useful discussions. W.E. is grateful to the EU for a Marie Curie Fellowship. Support from the UK EPSRC and The Royal Society is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Mathur.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information, figures and table S1 (PDF 398 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eerenstein, W., Wiora, M., Prieto, J. et al. Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nature Mater 6, 348–351 (2007). https://doi.org/10.1038/nmat1886

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1886

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing