Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The mechanism of morphogenesis in a phase-separating concentrated multicomponent alloy

Abstract

What determines the morphology of a decomposing alloy? Besides the well-established effect of the nucleation barrier, we demonstrate that, in a concentrated multicomponent Ni(Al,Cr) alloy, the details of the diffusion mechanism strongly affect the kinetic pathway of precipitation. Our argument is based on the combined use of atomic-scale observations, using three-dimensional atom-probe tomography (3D APT), lattice kinetic Monte Carlo simulations and the theory of diffusion. By an optimized choice of thermodynamic and kinetic parameters, we first reproduce the 3D APT observations, in particular the early-stage transient occurrence of coagulated precipitates. We then modify the kinetic correlations among the atomic fluxes in the simulation, without altering the thermodynamic driving force for phase separation, by changing the vacancy–solute interactions, resulting in a suppression of coagulation. Such changes can only be quantitatively accounted for with non-zero values for the off-diagonal terms of the Onsager matrix, at variance with classical models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The morphology of γ′-precipitates, Ni3(Al,Cr), in Ni 5.2 Al 14.2 Cr at.% after ageing at 873 K.
Figure 2: The temporal evolution of γ′-precipitates in Ni 5.2 Al 14.2 Cr at.%.
Figure 3: The significance of the diffusion of solute clusters (n-mers) in a Ni–Al or a Ni–Cr alloy.
Figure 4: The effects of vacancy–solute binding energies on growth and coarsening of γ′-precipitates.
Figure 5: The effects of vacancy–solute binding energies on composition profiles associated with the γ/γ′ interface.

Similar content being viewed by others

References

  1. Blavette, D. et al. The tomographic atom-probe—a quantitative 3-dimensional nanoanalytical instrument on an atomic-scale. Rev. Sci. Instrum. 64, 2911–2919 (1993).

    Article  CAS  Google Scholar 

  2. Cerezo, A., Godfrey, T. J., Sijbrandij, S. J., Smith, G. D. W. & Warren, P. J. Performance of an energy-compensated three-dimensional atom probe. Rev. Sci. Instrum. 69, 49–58 (1998).

    Article  CAS  Google Scholar 

  3. Kelly, T. F. et al. First data from a commercial local electrode atom probe (LEAP). Microsc. Microanal. 10, 373–383 (2004).

    Article  CAS  Google Scholar 

  4. Soisson, F., Barbu, A. & Martin, G. Monte Carlo simulations of copper precipitation in dilute iron-copper alloys during thermal ageing and under electron irradiation. Acta Mater. 44, 3789–3800 (1996).

    Article  CAS  Google Scholar 

  5. Pareige, C., Soisson, F., Martin, G. & Blavette, D. Ordering and phase separation in Ni-Cr-Al: Monte Carlo simulations versus three-dimensional atom probe. Acta Mater. 47, 1889–1899 (1999).

    Article  CAS  Google Scholar 

  6. Sudbrack, C. K. et al. in Electron Microscopy: Its Role in Materials Research—The Mike Meshii Symposium (eds Weertman, J. R., Fine, M. E., Faber, K. T., King, W. & Liaw, P.) 43–50 (TMS; The Minerals, Metals & Materials Society, Warrendale, PA, 2003).

    Google Scholar 

  7. Sudbrack, C. K., Yoon, K. E., Noebe, R. D. & Seidman, D. N. Temporal evolution of the nanostructure and phase compositions in a model Ni–Al–Cr alloy. Acta Mater. 54, 3199–3210 (2006).

    Article  CAS  Google Scholar 

  8. Sudbrack, C. K., Noebe, R. D. & Seidman, D. N. Compositional pathways and capillary effects during isothermal precipitation in a nondilute Ni–Al–Cr alloy. Acta Mater. 55, 119–130 (2007).

    Article  CAS  Google Scholar 

  9. Clouet, E. et al. Complex precipitation pathways in multicomponent alloys. Nature Mater. 5, 482–488 (2006).

    Article  CAS  Google Scholar 

  10. Allnatt, A. R. & Lidiard, A. B. Atomic Transport in Solids (Cambridge Univ. Press, Cambridge, 1993).

    Book  Google Scholar 

  11. Andersson, J. & Ågren, J. Models for numerical treatment of multicomponent diffusion in simple phases. J. Appl. Phys. 72, 1350–1355 (1992).

    Article  CAS  Google Scholar 

  12. Thornton, K., Ågren, J. & Voorhees, P. W. Modelling the evolution of phase boundaries in solids at the meso- and nano-scales. Acta Mater. 51, 5675–5710 (2003).

    Article  CAS  Google Scholar 

  13. Binder, K. Applications of Monte Carlo methods to statistical physics. Rep. Prog. Phys. 60, 487–559 (1997).

    Article  CAS  Google Scholar 

  14. Fratzl, P. & Penrose, O. Kinetics of spinodal decomposition in the Ising model with vacancy diffusion. Phys. Rev. B 50, 3477–3480 (1994).

    Article  CAS  Google Scholar 

  15. Weinkamer, R. & Fratzl, P. By which mechanism does coarsening in phase separating alloys proceed? Europhys. Lett. 61, 261–267 (2003).

    Article  CAS  Google Scholar 

  16. Martin, G. Atomic mobility in Cahn’s diffusion model. Phys. Rev. B 41, 2279–2283 (1990).

    Article  CAS  Google Scholar 

  17. Athénes, M., Bellon, P. & Martin, G. Effects of atomic mobilities on phase separation kinetics: A Monte Carlo study. Acta Mater. 48, 3675–2688 (2000).

    Article  Google Scholar 

  18. Le Bouar, Y. & Soisson, F. Kinetic pathways from EAM potentials: influence of the activation barriers. Phys. Rev. B 65, 094103 (2002).

    Article  Google Scholar 

  19. Rautiainen, T. T. & Sutton, A. P. Influence of the atomic diffusion mechanism on morphologies, kinetics, and the mechanisms of coarsening during phase separation. Phys. Rev. B 59, 13681–13692 (1999).

    Article  CAS  Google Scholar 

  20. Roussel, J. M. & Bellon, P. Vacancy-assisted phase separation with asymmetric atomic mobility: coarsening rates, precipitate composition, and morphology. Phys. Rev. B 63, 184114 (2001).

    Article  Google Scholar 

  21. Hellman, O. C., Blatz du Rivage, J. & Seidman, D. N. Efficient sampling for three-dimensional atom probe microscopy data. Ultramicroscopy 95, 199–205 (2003).

    Article  CAS  Google Scholar 

  22. Hellman, O. C., Vandenbroucke, J., Blatz du Rivage, J. & Seidman, D. N. Application software for data analysis for three-dimensional atom probe microscopy. Mater. Sci. Eng. A 327, 29–33 (2002).

    Article  Google Scholar 

  23. Hellman, O. C., Vandenbroucke, J. A., Rüsing, J., Isheim, D. & Seidman, D. N. Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc. Microanal. 6, 437–444 (2000).

    Article  CAS  Google Scholar 

  24. Sudbrack, C. K. Decomposition Behavior in Model Ni-Al-Cr-X Superalloys: Temporal Evolution and Compositional Pathways on a Nanoscale. Thesis, Northwestern Univ. (2004) (http://arc.nucapt.northwestern.edu/refbase/show.php?record=16).

  25. Yoon, K. E. Temporal Evolution of the Chemistry and Nanostructure of Multicomponent Model Ni-based Superalloys. Thesis, Northwestern Univ. (2004) (http://arc.nucapt.northwestern.edu/refbase/show.php?record=15).

  26. Sudbrack, C. K., Noebe, R. D. & Seidman, D. N. Direct observations of nucleation in a nondilute multicomponent alloy. Phys. Rev. B 73, 212101 (2006).

    Article  Google Scholar 

  27. Doyama, M. & Koehler, J. S. The relation between the formation energy of a vacancy and the nearest neighbor interactions in pure metals and liquid metals. Acta Metall. 24, 871–879 (1976).

    Article  CAS  Google Scholar 

  28. Ardell, A. J. & Ozolins, V. Trans-interface diffusion-controlled coarsening. Nature Mater. 4, 309–316 (2005).

    Article  CAS  Google Scholar 

  29. Lifshitz, I. M. & Slyozov, V. V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961).

    Article  Google Scholar 

  30. Wagner, C. Theorie der alterung von niederschlägen durch umlösen (Ostwald-reifung). Z. Elektrochem. 65, 581–591 (1961).

    CAS  Google Scholar 

  31. Martin, G. & Desgranges, C. Diffusion in crystals with nonconservative defects. Europhys. Lett. 44, 150–155 (1998).

    Article  CAS  Google Scholar 

  32. Seidman, D. N. & Balluffi, R. W. in Lattice Defects and their Interactions (ed. Hasiguti, R. R.) 913–960 (Gordon-Breach, New York, 1968).

    Google Scholar 

  33. Svoboda, J., Fischer, F. D., Fratzl, P. & Kroupa, A. Diffusion in multi-component systems with no or dense sources and sinks for vacancies. Acta Mater. 50, 1369–1381 (2002).

    Article  CAS  Google Scholar 

  34. Hartmann, A., Weinkamer, R., Fratzl, P., Svoboda, J. & Fischer, F. D. Onsager’s coefficients and diffusion laws—a Monte Carlo study. Phil. Mag. 85, 1243–1260 (2005).

    Article  CAS  Google Scholar 

  35. Barbe, V. & Nastar, M. A self-consistent mean field calculation of the phenomenological coefficients in a multi-component alloy with high jump frequency ratios. Phil. Mag. 86, 1513–1538 (2006).

    Article  CAS  Google Scholar 

  36. Foiles, S. M. & Adams, J. B. Thermodynamic properties of fcc transition metals as calculated with the embedded-atom method. Phys. Rev. B 40, 5909–5915 (1989).

    Article  CAS  Google Scholar 

  37. Payne, M., Teter, R., Allan, D., Arias, T. & Joannopoulos, J. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045–1097 (1992).

    Article  CAS  Google Scholar 

  38. Chen, N., Chen, Z. & Wei, Y. Multidimensional inverse lattice problem and a uniformly sampled arithmetic Fourier transform. Phys. Rev. E 55, R5–R8 (1997).

    CAS  Google Scholar 

  39. Liu, S., Li, M. & Chen, N. Möbius transform and inversion from cohesion to elastic constant. J. Phys. Condens. Matter 5, 4381–4390 (1993).

    Article  CAS  Google Scholar 

  40. Taylor, A. & Floyd, R. W. The constitution of nickel-rich alloys of the nickel-chromium-aluminum system. J. Inst. Met. 81, 451–464 (1952–53).

    Google Scholar 

Download references

Acknowledgements

This research is supported by the National Science Foundation, Division of Materials Research, under contract DMR-0241928. C.K.S. received partial support from an NSF graduate research fellowship, a W. P. Murphy Fellowship and a Northwestern University terminal year fellowship. K.E.Y. received partial support from a NASA graduate fellowship. T. F. Kelly, Imago Scientific Instruments, is kindly thanked for the use of a LEAP tomograph before our acquisition of this instrument. The authors thank M. Asta, M. Athènes, P. Bellon, E. Clouet, M. Nastar and F. Soisson who interacted in many helpful discussions and S. M. Foiles for his grand canonical Monte Carlo code. G.M. was partially supported by an Eshbach Visiting Scholar Award from the McCormick School of Engineering and Applied Science at Northwestern University.

Author information

Authors and Affiliations

Authors

Contributions

Z.M. carried out the LKMC simulation; C.K.S. and K.E.Y. carried out the 3D APT experiments; D.N.S. supervised and mentored Z.M., C.K.S. and K.E.Y.; G.M. analysed the observations in terms of diffusion theory.

Corresponding author

Correspondence to David N. Seidman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figure S1 and table S1 (PDF 238 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, Z., Sudbrack, C., Yoon, K. et al. The mechanism of morphogenesis in a phase-separating concentrated multicomponent alloy. Nature Mater 6, 210–216 (2007). https://doi.org/10.1038/nmat1845

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1845

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing