Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A flexible interpenetrating coordination framework with a bimodal porous functionality

Abstract

Introducing a functional part into open-framework materials that tunes the pore size/shape and overall porous activity will open new routes in framework engineering and in the fabrication of new materials. We have designed and synthesized a bimodal microporous twofold interpenetrating network {[Ni(bpe)2(N(CN)2)](N(CN)2)(5H2O)}n (1), with two types of channel for anionic N(CN)2 (dicyanamide) and neutral water molecules, respectively. The dehydrated framework provides a dual function of specific anion exchange of free N(CN)2 for the smaller N3 anions and selective gas sorption. The N3-exchanged framework leads to a dislocation of the mutual positions of the two interpenetrating frameworks, resulting in an increase in the effective pore size in one of the counterparts of the channels and a higher accommodation of adsorbate than in the as-synthesized framework (1), showing the first case of controlled sorption properties in flexible porous frameworks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: X-ray crystal structure of {[Ni(bpe)2(N(CN)2)](N(CN)2)(5H2O)}n (1).
Figure 2: XRPD patterns in different states.
Figure 3: Morphology of the crystal of {[Ni(bpe)2(N(CN)2)](N(CN)2)(5H2O)}n in different states.
Figure 4: Adsorption isotherm for vapour adsorption in {[Ni(bpe)2(N(CN)2)](N(CN)2)}n (1a).
Figure 5: Adsorption isotherm for vapour adsorption in {[Ni(bpe)2(N(CN)2)](N(CN)2)}n (1a).
Figure 6: Nanospace engineering by anion exchange.

Similar content being viewed by others

References

  1. Kitagawa, S., Kitaura, R. & Noro, S. I. Functional porous coordination polymers. Angew. Chem. Int. Edn 43, 2334–2375 (2004).

    Article  CAS  Google Scholar 

  2. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  Google Scholar 

  3. Bradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J. Design, chirality, and flexibility in nanoporous molecule-based materials. Acc. Chem. Res. 38, 273–282 (2005).

    Article  CAS  Google Scholar 

  4. Férey, G., Mellot-Draznieks, C., Serre, C. & Millange, F. Crystallized frameworks with giant pores: Are there limits to the possible? Acc. Chem. Res. 38, 217–225 (2005).

    Article  Google Scholar 

  5. Janiak, C. Engineering coordination polymers towards applications. Dalton Trans. 2781–2804 (2003).

  6. Férey, G. et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040–2042 (2005).

    Article  Google Scholar 

  7. Rowsell, J. L. C. & Yaghi, O. M. Strategies for hydrogen storage in metal–organic frameworks. Angew. Chem. Int. Edn 44, 4670–4679 (2005).

    Article  CAS  Google Scholar 

  8. Noro, S. I., Kitagwa, S., Kondo, M. & Seki, K. A new, methane adsorbent, porous coordination polymer [{Cu(SiF6)(4,4′-bipyridine)2]n . Angew. Chem. Int. Edn 39, 2082–2084 (2000).

    Article  CAS  Google Scholar 

  9. Kondo, M., Yoshitomi, T., Seki, K., Matsuzaka, H. & Kitagawa, S. Three-dimensional framework with channeling cavities for small molecules: {[M2(4,4′-bpy)3(NO3)4].xH2O}n (M=Co, Ni, Zn). Angew. Chem. Int. Edn 36, 1725–1726 (1997).

    Article  CAS  Google Scholar 

  10. Ohmori, O. & Fujita, M. Heterogeneous catalysis of a coordination network: cyanosilylation of imines catalyzed by a Cd(II)-(4,4′-bipyridine) square grid complex. Chem. Commun. 1586–1587 (2004).

  11. Wu, C.-D., Hu, A., Zhang, L. & Lin, W. A homochiral porous metal–organic framework for highly enantioselective heterogeneous asymmetric catalysis. J. Am. Chem. Soc. 127, 8940–8941 (2005).

    Article  CAS  Google Scholar 

  12. Chang, J.-S. et al. Nanoporous metal containing nickel phosphates: A class of shape selective catalyst. Angew. Chem. Int. Edn 43, 2819–2822 (2004).

    Article  CAS  Google Scholar 

  13. Seo, J. S. K. et al. A homochiral metal–organic porous material for enantioselective separation and catalysis. Nature 404, 982–986 (2000).

    Article  CAS  Google Scholar 

  14. Pan, L., Olson, D. H., Ciemnolonski, L. R., Heddy, R. & Li, J. Separation of hydrocarbons with a microporous metal–organic framework. Angew. Chem. Int. Edn 45, 616–619 (2006).

    Article  CAS  Google Scholar 

  15. Min, K. S. & Suh, M. P. Silver(I)-polynitrile network solids for anion exchange: Anion-induced transformation of supramolecular structure in the crystalline state. J. Am. Chem. Soc. 122, 6834–6840 (2000).

    Article  CAS  Google Scholar 

  16. Halder, G. H., Kepert, C. J., Moubaraki, B., Murray, K. S. & Cashion, J. D. Guest dependent spin crossover in a nanoporous molecular framework material. Science 298, 1762–1765 (2002).

    Article  CAS  Google Scholar 

  17. Kitaura, R., Seki, K., Akiyama, G. & Kitagawa, S. Porous coordination-polymer crystals with gated channels specific for supercritical gases. Angew. Chem. Int. Edn 42, 428–431 (2003).

    Article  CAS  Google Scholar 

  18. Seki, K. Dynamic channels of a porous coordination polymer responding to external stimuli. Phys. Chem. Chem. Phys. 4, 968–1971 (2002).

    Article  Google Scholar 

  19. Lee, E. Y., Jang, S. Y. & Suh, M. P. Multifunctionality and crystal dynamics of a highly stable, porous metal–organic framework [Zn4O(NTB)2]. J. Am. Chem. Soc. 127, 6374–6381 (2005).

    Article  CAS  Google Scholar 

  20. Biradha, K. & Fujita, M. A spring like 3D-coordination network that shrinks or swells in a crystal-to-crystal manner upon guest removal or readsorption. Angew. Chem. Int. Edn 41, 3392–3395 (2002).

    Article  CAS  Google Scholar 

  21. Matsuda, R. et al. Guest shape-responsive fitting of porous coordination polymer with shrinkable framework. J. Am. Chem. Soc. 126, 14063–14070 (2004).

    Article  CAS  Google Scholar 

  22. Cussen, E. J., Claridge, J. B., Rosseinsky, M. J. & Kepert, C. J. Flexible sorption and transformation behavior in a microporous metal–organic framework. J. Am. Chem. Soc. 124, 9574–9581 (2002).

    Article  CAS  Google Scholar 

  23. Bourrelly, S. et al. Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. J. Am. Chem. Soc. 127, 13519–13521 (2005).

    Article  CAS  Google Scholar 

  24. Reineke, T. M., Eddaoudi, M., Moler, D., O’Keeffe, M. & Yaghi, O. M. Large free volume in maximally interpenetrating networks: The role of secondary building units exemplified by Tb2(ADB)3[(CH3)2SO]4.16[(CH3)2SO]. J. Am. Chem. Soc. 122, 4843–4844 (2000).

    Article  CAS  Google Scholar 

  25. Chen, B., Eddaoudi, M., Hyde, S. T., O’Keeffe, M. & Yaghi, O. M. Interwoven metal–organic framework on a periodic minimal surface with extra large pores. Science 291, 1021–1023 (2001).

    Article  CAS  Google Scholar 

  26. Kesanli, B. et al. Highly interpenetrated metal–organic frameworks for hydrogen storage. Angew. Chem. Int. Edn 44, 72–75 (2005).

    Article  CAS  Google Scholar 

  27. Matsuda, R. et al. Highly controlled acetylene accommodation in a metal–organic microporous material. Nature 436, 238–241 (2005).

    Article  CAS  Google Scholar 

  28. Kuznicki, S. M. et al. A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules. Nature 412, 720–723 (2001).

    Article  CAS  Google Scholar 

  29. Dinca, M. & Long, J. R. Strong H2 binding and selective gas adsorption within the microporous coordination solid Mg3(O2C-C10H6-CO2)3 . J. Am. Chem. Soc. 127, 9376–9377 (2005).

    Article  CAS  Google Scholar 

  30. Dybtsev, D. N., Chun, H., Yoon, S. H., Kim, D. & Kim, K. Microporous manganese formate: A simple metal–organic porous material with high framework stability and high selective gas sorption properties. J. Am. Chem. Soc. 126, 32–33 (2004).

    Article  CAS  Google Scholar 

  31. Pan, L. et al. Porous lanthanide-organic frameworks: Synthesis, characterization, and unprecedented gas adsorption properties. J. Am. Chem. Soc. 125, 3062–3067 (2003).

    Article  CAS  Google Scholar 

  32. Maji, T. K., Uemura, K., Chang, H.-C., Matsuda, R. & Kitagawa, S. Expanding and shrinking porous modulation based on pillared-layer coordination polymers showing selective guest adsorption. Angew. Chem. Int. Edn 43, 3269–3272 (2004).

    Article  CAS  Google Scholar 

  33. Muthu, S., Yip, J. H. K. & Vittal, J. J. Coordination network of Ag(I) and N, N′-bis(3-pyridine-carboxamide)-1,6-hexane: Structure and anion exchange. J. Chem. Soc. Dalton Trans. 4561–4568 (2002).

  34. Lee, E., Kim, J., Heo, J., Whang, D. & Kim, K. A two dimensional polyrotaxane with large cavities and channels: A novel approach to metal–organic open-frameworks by using supramolecular building blocks. Angew. Chem. Int. Edn 40, 399–402 (2001).

    Article  CAS  Google Scholar 

  35. Kurmoo, M., Kumagai, H., Hughes, S. M. & Kepert, C. J. Reversible guest exchange and ferrimagnetism (T c=60.5 K) in a porous cobalt(II)-hydroxide layer structure pillared with trans-1,4-cyclohexanedicarboxylate. Inorg. Chem. 42, 6709–6722 (2003).

    Article  CAS  Google Scholar 

  36. Guillou, N., Livage, C., Drillon, M. & Férey, G. The chirality, porosity, and ferromagnetism of a 3D nickel glutarate with intersecting 20-membered ring channels. Angew. Chem. Int. Edn 42, 5314–5317 (2003).

    Article  CAS  Google Scholar 

  37. Abrahams, B. F., Batten, S. R., Hamit, H., Hoskins, B. F. & Robson, R. A cubic (3,4)-connected net with large cavities in solvated [Cu3(tpt)4](ClO4)3 (tpt=2,4,6-Tri(4-pyridyl)-1,3,5-triazine). Angew. Chem. Int. Edn Engl. 35, 1690–1692 (1996).

    Article  CAS  Google Scholar 

  38. Tong, M. L. et al. A novel three-dimensional coordination polymer constructed with mixedvalence dimeric copper(I,II) units. Chem. Commun. 428–429 (2003).

  39. Webster, C. E., Drago, R. S. & Zerner, M. C. Molecular dimensions for adsorptives. J. Am. Chem. Soc. 120, 5509–5516 (1998).

    Article  CAS  Google Scholar 

  40. Beck, D. W. Zeolite Molecular Sieves (Wiley, New York, 1974).

    Google Scholar 

  41. Llewellyn, P. L., Bourrelly, S., Serre, C, Filinchuk, Y. & Férey, G. How hydration drastically improves adsorption selectivity for CO2 over CH4 in the flexible chromium terephthalate MIL-53. Angew. Chem. Int. Edn 45, 7751–7754 (2006).

    Article  CAS  Google Scholar 

  42. Rather, B. & Zaworotko, M. J. A 3D metal–organic network, [Cu2(glutarate)2(4,4′-bipyridine)], that exhibits single-crystal to single-crystal dehydration and rehydration. Chem. Commun. 830–831 (2003).

  43. Takaoka, K., Kawano, M., Tominaga, M. & Fujita, M. In-situ observation of a reversible single-crystal-to-single-crystal apical-ligand-exchange reaction in hydrogen-bonded 2D coordination network. Angew. Chem. Int. Edn 44, 2151–2154 (2005).

    Article  CAS  Google Scholar 

  44. Lee, E. Y. & Suh, M. P. A robust porous material constructed of linear coordination polymer chains: Reversible single-crystal-to-single-crystal transformation upon dehydration and rehydration. Angew. Chem. Int. Edn 43, 2798–2801 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research in a Priority Area ‘Chemistry of coordination space’ (434) and a CREST/JST programme from the Ministry of Education, Culture, Sports, Science and Technology, Government of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Kitagawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information, Fig S1

Supplementary Information; Figures S1-S8; Tables S1, S2 (PDF 1055 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maji, T., Matsuda, R. & Kitagawa, S. A flexible interpenetrating coordination framework with a bimodal porous functionality. Nature Mater 6, 142–148 (2007). https://doi.org/10.1038/nmat1827

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1827

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing