Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanoparticle-tuned assembly and disassembly of mesostructured silica hybrids

An Erratum to this article was published on 05 February 2007


Although silica nanoparticles are used as building blocks in nature and synthetic mesostructures, the influence of nanoparticle characteristics on the assembly and disassembly of mesostructured silica has not been investigated. We demonstrate that nanoparticle size and size distribution allow us to control the assembly of silica-type mesostructures and that, because of the discrete nature of nanoparticles, we can disassemble these mesostructures into a rich variety of structural building units. When assembling mesostructures, nanoparticles undergo size-dependent segregation once the nanoparticle diameter exceeds a critical size threshold, which is approximated by the root-mean-square end-to-end distance of the hydrophilic block of the block copolymer. Using this phenomenon, we direct gold–silica core–shell nanoparticles into the segregated regions of silica-type mesostructures, demonstrating the ability to precisely place nanoparticles and create compositionally heterogeneous, functional mesostructures. We further show that, because the mesostructures are composed of nanoparticles, they can be disassembled into nanotubes, hexapods and other complex, well-defined structural units, thereby introducing the concept of retrosynthesis to materials chemistry. Our results demonstrate how nanoparticle characteristics influence the structure and properties of nanoparticle-derived mesostructures. Size-dependent segregation and disassembly should improve structure control at the near-molecular level and should be applicable to a wide range of nanoparticle-derived mesostructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Assembly and disassembly of mesostructured hybrids.
Figure 2: Control of sol nanoparticle size.
Figure 3: Influence of nanoparticle size on silica-type mesostructure.
Figure 4: Disassembly of mesostructured silica hybrids.

Similar content being viewed by others


  1. Simpson, T. L. & Volcani, B. E. (eds) Silicon and Siliceous Structures in Biological Systems (Springer, New York, 1981).

  2. Aizenberg, J. et al. Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309, 275–278 (2005).

    Article  CAS  Google Scholar 

  3. Shimizu, K., Cha, J., Stucky, G. D. & Morse, D. E. Silicatein a: Cathepsin L-like protein in sponge biosilica. Proc. Natl Acad. Sci. USA 95, 6234–6238 (1998).

    Article  CAS  Google Scholar 

  4. Cölfen, H. & Mann, S. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew. Chem. Int. Edn Engl. 42, 2350–2365 (2003).

    Article  Google Scholar 

  5. Kröger, N., Deutzmann, R. & Sumper, M. Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286, 1129–1132 (1999).

    Article  Google Scholar 

  6. Kröger, N., Lorenz, S., Brunner, E. & Sumper, M. Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 298, 584–586 (2002).

    Article  Google Scholar 

  7. Vrieling, E. G., Beelen, T. P. M., Santen, R. A. v. & Gieskes, W. W. C. Mesophases of (bio)polymer-silica particles inspire a model for silica biomineralization in diatoms. Angew. Chem. Int. Edn Engl. 41, 1543–1546 (2002).

    Article  CAS  Google Scholar 

  8. Sumper, M. A phase separation model for the nanopatterning of diatom biosilica. Science 295, 2430–2433 (2002).

    Article  CAS  Google Scholar 

  9. Yanagisawa, T., Shimizu, T., Kuroda, K. & Kato, C. Trimethylsilyl derivatives of alkyltrimethylammonium-kanemite complexes and their conversion to microporous silica materials. Bull. Chem. Soc. Jpn 63, 1535–1537 (1990).

    Article  CAS  Google Scholar 

  10. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992).

    Article  CAS  Google Scholar 

  11. Huo, Q. et al. Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 368, 317–321 (1994).

    Article  CAS  Google Scholar 

  12. Bagshaw, S. A., Prouzet, E. & Pinnavaia, T. J. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science 269, 1242–1244 (1995).

    Article  Google Scholar 

  13. Aksay, I. A. et al. Biomimetic pathways for assembling inorganic thin films. Science 273, 892–898 (1996).

    Article  CAS  Google Scholar 

  14. Yang, H., Coombs, N. & Ozin, G. A. Morphogenesis of shapes and surface patterns in mesoporous silica. Nature 386, 692–695 (1997).

    Article  CAS  Google Scholar 

  15. Zhao, D. et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998).

    Article  CAS  Google Scholar 

  16. Lu, Y. et al. Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature 398, 223–226 (1999).

    Article  CAS  Google Scholar 

  17. Soler-Illia, G. J. d. A. A., Sanchez, C., Lebeau, B. & Patarin, J. Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev. 102, 4093–4138 (2002).

    Article  Google Scholar 

  18. Jain, A. & Wiesner, U. Silica-type mesostructures from block copolymer phases: generalization to the dense nanoparticle regime. Macromolecules 37, 5665–5670 (2004).

    Article  CAS  Google Scholar 

  19. Gupta, S. et al. Entropy-driven segregation of nanoparticles to cracks in multilayered composite polymer structures. Nature Mater. 5, 229–233 (2006).

    Article  Google Scholar 

  20. Mackay, M. E. et al. General strategies for nanoparticle dispersion. Science 311, 1740–1743 (2006).

    Article  CAS  Google Scholar 

  21. Templin, M. et al. Organically modified aluminosilicate mesostructures from block copolymer phases. Science 278, 1795–1798 (1997).

    Article  CAS  Google Scholar 

  22. Brandup, J., Immergut, E. H. & Grulke, E. A. (eds) Polymer Handbook (Wiley, New York, 1999).

  23. Thompson, R. B., Ginzburg, V. V., Matsen, M. W. & Balazs, A. C. Predicting the mesophases of copolymer-nanoparticle composites. Science 292, 2469–2472 (2001).

    Article  CAS  Google Scholar 

  24. Huh, J., Ginzburg, V. V. & Balazs, A. C. Thermodynamic behavior of particle/diblock copolymer mixtures: Simulation and theory. Macromolecules 33, 8085–8096 (2000).

    Article  CAS  Google Scholar 

  25. Kim, S. S., Zhang, W. & Pinnavaia, T. J. Ultrastable mesostructured silica vesicles. Science 282, 1302–1305 (1998).

    Article  CAS  Google Scholar 

  26. Liz-Marzan, L. M., Giersig, M. & Mulvaney, P. Synthesis of nanosized gold-silica core-shell particles. Langmuir 12, 4329–4335 (1996).

    Article  CAS  Google Scholar 

  27. Li, S., Szalai, M. L., Kevwitch, R. M. & McGrath, D. V. Dendrimer disassembly by benzyl ether depolymerization. J. Am. Chem. Soc. 125, 10516–10517 (2003).

    Article  CAS  Google Scholar 

  28. Ulrich, R., Du Chesne, A., Templin, M. & Wiesner, U. Nano-objects with controlled shape, size, and composition from block copolymer mesophases. Adv. Mater. 11, 141–146 (1999).

    Article  CAS  Google Scholar 

  29. Erhardt, R. et al. Janus Micelles. Macromolecules 34, 1069–1075 (2001).

    Article  CAS  Google Scholar 

  30. Jain, A. et al. Direct access to bicontinuous skeletal inorganic plumber’s nightmare networks from block copolymers. Angew. Chem. Int. Edn Engl. 44, 1226–1229 (2005).

    Article  CAS  Google Scholar 

  31. Yin, Y. & Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005).

    Article  CAS  Google Scholar 

  32. Chen, S., Wang, Z. L., Ballato, J., Foulger, S. H. & Carroll, D. L. Monopod, bipod, tripod, and tetrapod gold nanocrystals. J. Am. Chem. Soc. 125, 16186–16187 (2003).

    Article  CAS  Google Scholar 

  33. Reculusa, S., Mingotaud, C., Bourgeat-Lami, E., Duguet, E. & Ravaine, S. Synthesis of daisy-shaped and multipod-like silica/polystyrene nanocomposites. Nano Lett. 4, 1677–1682 (2004).

    Article  CAS  Google Scholar 

  34. Floudas, G. et al. Poly(ethylene oxide-b-isoprene) diblock copolymer phase diagram. Macromolecules 34, 2947–2957 (2001).

    Article  CAS  Google Scholar 

Download references


This work was supported by grants from the Department of Energy and the National Science Foundation, through the Cornell Center for Materials Research. S.C.W. acknowledges support from the Environmental Protection Agency STAR fellowship program. The authors thank M. Kamperman for acquiring the SAXS data.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ulrich Wiesner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information and Figure S1 (PDF 204 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warren, S., DiSalvo, F. & Wiesner, U. Nanoparticle-tuned assembly and disassembly of mesostructured silica hybrids. Nature Mater 6, 156–161 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing