Review Article | Published:

Multiferroics: progress and prospects in thin films

Nature Materials volume 6, pages 2129 (2007) | Download Citation

Subjects

Abstract

Multiferroic materials, which show simultaneous ferroelectric and magnetic ordering, exhibit unusual physical properties — and in turn promise new device applications — as a result of the coupling between their dual order parameters. We review recent progress in the growth, characterization and understanding of thin-film multiferroics. The availability of high-quality thin-film multiferroics makes it easier to tailor their properties through epitaxial strain, atomic-level engineering of chemistry and interfacial coupling, and is a prerequisite for their incorporation into practical devices. We discuss novel device paradigms based on magnetoelectric coupling, and outline the key scientific challenges in the field.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & (eds.) Magnetoelectric Interaction Phenomena in Crystals (Gordon and Breach, London, 1995).

  2. 2.

    Revival of the magnetoelectric effect. J. Phys. D 38, R1–R30 (2005).

  3. 3.

    & The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005).

  4. 4.

    , & Multiferroic and magnetoelectric materials. Nature 44, 759–765 (2006).

  5. 5.

    et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003).

  6. 6.

    et al. Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4. Nature 436, 1136–1138 (2005).

  7. 7.

    Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000).

  8. 8.

    & Recent progress in first-principles studies of magnetoelectric multiferroics. Curr. Opin. Solid State Mater. Sci. 9, 128–139 (2005).

  9. 9.

    et al. Oxide nano-engineering using MBE. Mater. Sci. Eng. B 87, 282–291 (2001).

  10. 10.

    & Multiferroics: A magnetic twist for ferroelectricity. Nature Mater. 6, 13–20 (2006).

  11. 11.

    et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719 (2003).

  12. 12.

    , , & The origin of ferroelectricity in magnetoelectric YMnO3. Nature Mater. 3, 164–170 (2004).

  13. 13.

    & Ferroelectric transition in YMnO3 from first principles. Phys. Rev. B 72, 100103(R) (2005).

  14. 14.

    & BaNiF4: an electric field-switchable weak antiferromagnet. Phys. Rev. B 74, 1 (2006).

  15. 15.

    & Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 060401(R) (2005).

  16. 16.

    & Origin of ferroelectricity in the multiferroic barium fluorides BaMF4. Phys. Rev. B 74, 024102 (2006).

  17. 17.

    et al. Giant room-temperature magnetodielectric response in the electronic ferroelectric LuFe2O4. Adv. Mater. 18, 1737–1739 (2006).

  18. 18.

    , , & Epitaxially grown YMnO3 film: new candidate for nonvolatile memory devices. Appl. Phys. Lett. 69, 1011–1013 (1996).

  19. 19.

    , , & Stabilization of YMnO3 in a perovskite structure as a thin film. Chem. Mater. 10, 2592–5 (1998).

  20. 20.

    , , & Microstructure control of YMnO3 thin films on Si (100) substrates. Thin Solid Films 416, 62–65 (2002).

  21. 21.

    , , , & Ferroelectric property of alkoxy-derived YMnO3 films crystallized in argon. Jpn J. Appl. Phys. 42, 5692–5695 (2003).

  22. 22.

    , , , & Structure and ferroelectric properties of ferroelectromagnetic YMnO3 thin films prepared by pulsed laser deposition. Phys. Status Solidi A 201, 497–501 (2004).

  23. 23.

    & The effects of drying temperature on the crystallization of YMnO3 thin films prepared by sol-gel method using alkoxides. J. Eur. Ceram. Soc. 24, 2613–2617 (2004).

  24. 24.

    et al. Pulsed-laser-deposited YMnO3 epitaxial films with square polarization-electric field hysteresis loop and low-temperature growth. Jpn J. Appl. Phys. 43, 6613–6616 (2004).

  25. 25.

    et al. C-axis oriented MOCVD YMnO3 thin film and its electrical characteristics in MFIS FeTRAM. Integr. Ferroelectr. 68, 75 (2004).

  26. 26.

    et al. Molecular beam epitaxy of YMnO3 on c-plane GaN. Appl. Phys. Lett. 88, 132903 (2006).

  27. 27.

    et al. Epitaxial growth of multiferroic YMnO3 on GaN. Appl. Phys. Lett. 87, 17195 (2005).

  28. 28.

    Phase Competition and Thin Film Growth of Layered Ferroelectrics and Related Perovskite Phases Thesis, Carnegie Mellon Univ. (2006).

  29. 29.

    , & Dielectric hysteresis in single crystal BiFeO3. Solid State Commun. 8, 1073–1074 (1970).

  30. 30.

    et al. Dramatically enhanced polarization in (001), (101), and (111) BiFeO3 thin films due to epitaxial-induced transitions. Appl. Phys. Lett. 84, 5261–5263 (2004).

  31. 31.

    et al. Epitaxial growth of BiFeO3 thin films by LPE and sol-gel methods. J. Magn. Magn. Mater. 283, 415–421 (2004).

  32. 32.

    , , , & Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Appl. Phys. Lett. 86, 062903 (2005).

  33. 33.

    et al. High resolution X-ray diffraction and transmission electron microscopy of multiferroic BiFeO3. Appl. Phys. Lett. 86, 071913 (2005).

  34. 34.

    , , , & First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys. Rev. B 71, 014113 (2005).

  35. 35.

    , , , & Giant ferroelectric polarization beyond 150 μC/cm2 in BiFeO3 thin film. Jpn J. Appl. Phys. 43, L647–L648 (2004).

  36. 36.

    & Effect of epitaxial strain on the spontaneous polarization of thin film ferroelectrics. Phys. Rev. Lett. 95, 257601 (2005).

  37. 37.

    , & Detection of magnetic order in ferroelectric BiFeO3 by neutron diffraction. Sov. Phys. Dokl. 7, 742–744 (1963).

  38. 38.

    Thermodynamic theory of “weak” ferromagnetism in antiferromagnetic substances. Sov. Phys. JETP 5, 1259–1272 (1957).

  39. 39.

    Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

  40. 40.

    , & Spiral magnetic ordering in bismuth ferrite. J. Phys. C 15, 4835–4846 (1982).

  41. 41.

    et al. Linear magnetoelectric effect and phase transitions in bismuth ferrite, BiFeO3. JETP Lett. 57, 69–73 (1993).

  42. 42.

    et al. Destruction of spin cycloid in (111)c-oriented BiFeO3 thin films by epitaxial constraint: enhanced polarization and release of latent magnetization. Appl. Phys. Lett. 86, 032511 (2005).

  43. 43.

    et al. Unravelling the origin of the controversial magnetic properties of BiFeO3 thin films. Preprint at <>(2006).

  44. 44.

    et al. Epitaxial BiFeO3 thin films on Si. Appl. Phys. Lett. 85, 2574–2576 (2004).

  45. 45.

    et al. Magnetic ferroelectrics Bi, Pb-3d transition metal perovskites. Trans. Mater. Res. Soc. Jpn 31, 41–46 (2006).

  46. 46.

    et al. Epitaxial growth and properties of metastable BiMnO3 thin films. Appl. Phys. Lett. 84, 91–93 (2004).

  47. 47.

    et al. Bismuth manganite: a multiferroic with a large nonlinear optical response. Phys. Rev. B 69, 214109 (2004).

  48. 48.

    , , & Growth of highly resistive BiMnO3 films. Appl. Phys. Lett. 87, 101906 (2005).

  49. 49.

    , , , & Structure determination of ferromagnetic perovskite BiMnO3. J. Solid State Chem. 145, 639–642 (1999).

  50. 50.

    et al. Orbital ordering as the determinant for ferromagnetism in biferroic BiMnO3. Phys. Rev. B 66, 064425 (2002).

  51. 51.

    et al. Spin filtering through ferromagnetic BiMnO3 tunnel barriers. Phys. Rev. B 72, 020406 (2005).

  52. 52.

    , , & Writing polarization bits on the multiferroic BiMnO3 thin film using Kelvin probe force microscope. Appl. Phys. Lett. 84, 4971–4973 (2004).

  53. 53.

    et al. Evidence for the likely occurence of magnetoferroelectricity in the simple perovskite BiMnO3. Solid State Commun. 122, 49–52 (2002).

  54. 54.

    et al. BiScO3: Centrosymmetric BiMnO3-type oxide. J. Am. Chem. Soc. 128, 706–707 (2006).

  55. 55.

    , , , & First-principles study on the electronic structure of bismuth transition metal oxides. J. Phys. Cond. Mat. 16, S5677–S5683 (2004).

  56. 56.

    et al. Fabrication of multiferroic epitaxial BiCrO3 thin films. Appl. Phys. Lett. 88, 152902 (2006).

  57. 57.

    et al. Synthesis, structure, and properties of new perovskite PbVO3. Chem. Mater. 16, 3267–3273 (2004).

  58. 58.

    et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005–1009 (2004).

  59. 59.

    et al. Room-temperature ferroelectricity in strained SrTiO3. Nature 430, 758–761 (2004).

  60. 60.

    & Influence of strain and oxygen vacancies on the magnetoelectric properties of multiferroic bismuth ferrite. Phys. Rev. B 71, 224103 (2005).

  61. 61.

    et al. Electrically controllable antiferromagnets: Nanoscale observation of coupling between antiferromagnetism and ferroelectricity in multiferroic BiFeO3. Nature Mater. 5, 823–829 (2006).

  62. 62.

    Fundamental size limits in ferroelectricity. Science 304, 1606 (2004).

  63. 63.

    , & The properties of ferroelectric films at small dimensions. Annu. Rev. Mater. Sci. 30, 263–298 (2000).

  64. 64.

    , & Ferroelectricity at the nanoscale: Local polarization in oxide thin films and heterostructures. Science 303, 488–491 (2004).

  65. 65.

    et al. Ferroelectricity in ultrathin perovskite films. Science 304, 1650–1653 (2004).

  66. 66.

    & Microscopic model of ferroelectricity in stress-free PbTiO3 thin films. Appl. Phys. Lett. 76, 2767–2769 (2000).

  67. 67.

    & Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003).

  68. 68.

    , , , & Tailoring of ferromagnetic Pr0.85Ca0.15MnO3/ferroelectric Ba0.6Sr0.4TiO3 superlattices for multiferroic properties. Appl. Phys. Lett. 84, 4424–4426 (2004).

  69. 69.

    , , & Magnetocapacitance effect in perovskite-superlattice based multiferroics. Appl. Phys. Lett. 87, 022505 (2005).

  70. 70.

    , & The single-phase multiferroic oxides: from bulk to thin film. J. Phys. Cond. Mat. 17, 7753 (2005).

  71. 71.

    , & Ferromagnetism in LaFeO3-LaCrO3 superlattices. Science 280, 1064–1066 (1998).

  72. 72.

    & Ab initio prediction of a multiferroic with large polarization and magnetization. Appl. Phys. Lett. 86, 012505 (2005).

  73. 73.

    et al. Pulsed-laser-deposited epitaxial Sr2FeMoO6−y thin films: Positive and negative magnetoresistance regimes. Appl. Phys. Lett. 74, 3696–3698 (1999).

  74. 74.

    et al. Designed ferromagnetic, ferroelectric Bi2NiMnO6. J. Am. Chem. Soc. 127, 8889–8892 (2005).

  75. 75.

    & A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

  76. 76.

    , & Compositional inversion symmetry breaking in ferroelectric perovskites. Phys. Rev. Lett. 84, 5636–5639 (2000).

  77. 77.

    , , , & Strong polarization enhancement in asymmetric three-component ferroelectric superlattices. Nature 433, 395–399 (2005).

  78. 78.

    , , & Artificial dielectric superlattices with broken inversion symmetry. Phys. Rev. Lett. 90, 036802 (2003).

  79. 79.

    , & Towards ferroelectrically-controlled magnetism: Magnetoelectric effect in Fe/BaTiO3 multilayers. Preprint at <> (2006).

  80. 80.

    & Origin of the dielectric dead layer in nanoscale capacitors. Nature 443, 679–682 (2006).

  81. 81.

    et al. Electric field effect in diluted magnetic insulator anatase Co:TiO2. Phys. Rev. Lett. 94, 126601 (2005).

  82. 82.

    , & Giant electric field modulation of double exchange ferromagnetism at room temperature in the perovskite manganite/titanate p–n junction. Phys. Rev. Lett. 88, 027204 (2002).

  83. 83.

    et al. Electroresistance and electronic phase separation in mixed-valent manganites. Phys. Rev. Lett. 86, 5998–6001 (2001).

  84. 84.

    et al. Thickness-dependent electronic structure of ultrathin SrRuO3 films studied by in situ photoemission spectroscopy. Appl. Phys. Lett. 87, 162508 (2005).

  85. 85.

    , , & Magnetic-field-induced electric polarization in multiferroic nanostructures. Phys. Rev. Lett. 94, 197203 (2005).

  86. 86.

    et al. Size effects in ultrathin epitaxial ferroelectric heterostructures. Appl. Phys. Lett. 84, 5225–5227 (2004).

  87. 87.

    et al. Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661–663 (2004).

  88. 88.

    et al. Electric field-induced magnetization switching in epitaxial columnar nanostructures. Nano Lett. 5, 1793–1796 (2005).

  89. 89.

    et al. Metal-induced assembly of a semiconductor island lattice: Ge truncated pyramids on Au-patterned Si. Nano Lett. 5, 2070–2073 (2005).

  90. 90.

    & in Magnetoelectric Interaction Phenomena in Crystals (eds Freeman, A. J. & Schmid, H.) 181–194 (Gordon and Breach, London, 1975).

  91. 91.

    & Ferroelectromagnets. Sov. Phys. Usp. 25, 475–493 (1982).

  92. 92.

    et al. Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys. Rev. B 64, 214408 (2001).

  93. 93.

    , , & Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides. Phys. Rev. B 65, 134402 (2002).

  94. 94.

    , , Enhanced magnetoelectric effects in laminate composites of terfenol-D/Pb(Zr,Ti)O3 under resonant drive. Appl. Phys. Lett. 83, 4812–4814 (2003).

  95. 95.

    et al. Observation of antiferromagnetic domains in epitaxial thin films. Science 287, 10 14–1016 (2000).

  96. 96.

    , , , & Creation of an antiferromagnetic exchange spring. Phys. Rev. Lett. 92, 247201 (2004).

  97. 97.

    & Exchange bias. J. Magn. Magn. Mater. 192, 203 (1999).

  98. 98.

    et al. Exchange bias and electric polarization with YMnO3. Appl. Phys. Lett. 89, 032510 (2006).

  99. 99.

    et al. Tunnel magnetoresistance and exchange bias with multiferroic BiFeO3 epitaxial thin films. Preprint at <> (2006).

  100. 100.

    , & Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323 (2005).

  101. 101.

    , , , & Magnetoelectric switching of exchange bias. Phys. Rev. Lett. 94, 117203 (2005).

  102. 102.

    & Magnetoelectronics with magnetoelectrics. J. Phys. Cond. Mat. 17, L39–L44 (2005).

  103. 103.

    & Tunneling across a ferroelectric. Science 313, 181–183 (2006).

  104. 104.

    et al. Possible evidence for electromagnons in multiferroic manganites. Nature Phys. 2, 97–100 (2006).

Download references

Acknowledgements

Clearly, this work represents the cumulative efforts of many researchers around the world. Specifically, we acknowledge several key collaborators (in alphabetical order): L. Q. Chen (Pennsylvania State Univ. (PSU)), L. E. Cross (PSU), C. Ederer (Columbia Univ. ), C. B. Eom (Univ. Wisconsin), M. Fiebig (Univ. Bonn), V. Gopalan (PSU), J. Kreisel (Univ. Grenoble), S. Ogale (Univ. Maryland), K. M. Rabe (Rutgers Univ.), D. Schlom (PSU), H. Schmid (Univ. Geneva), A. Scholl (ALS-LBL), J. F. Scott (Univ. Cambridge), D. Viehland (Virginia Tech.), M. Wuttig (Univ. Maryland), F. Zavaliche (Seagate Technologies) and T. Zhao (Seagate Technologies). We also thank past and present members of our research groups at Berkeley and Santa Barbara. We thank the following funding agencies: ONR, DOE and NSF (R.R.) and NSF (N.A.S.).

Author information

Affiliations

  1. Department of Materials Science and Engineering, and Department of Physics, University of California, Berkeley, California 94720, USA.

    • R. Ramesh
  2. Materials Department, University of California, Santa Barbara, California 93106, USA.

    • Nicola A. Spaldin

Authors

  1. Search for R. Ramesh in:

  2. Search for Nicola A. Spaldin in:

Corresponding authors

Correspondence to R. Ramesh or Nicola A. Spaldin.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nmat1805

Further reading