Abstract
Magnetism and ferroelectricity are essential to many forms of current technology, and the quest for multiferroic materials, where these two phenomena are intimately coupled, is of great technological and fundamental importance. Ferroelectricity and magnetism tend to be mutually exclusive and interact weakly with each other when they coexist. The exciting new development is the discovery that even a weak magnetoelectric interaction can lead to spectacular cross-coupling effects when it induces electric polarization in a magnetically ordered state. Such magnetic ferroelectricity, showing an unprecedented sensitivity to ap plied magnetic fields, occurs in 'frustrated magnets' with competing interactions between spins and complex magnetic orders. We summarize key experimental findings and the current theoretical understanding of these phenomena, which have great potential for tuneable multifunctional devices.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Multi-state data storage in a two-dimensional stripy antiferromagnet implemented by magnetoelectric effect
Nature Communications Open Access 03 June 2023
-
Magnetoelectric coupling in multiferroics probed by optical second harmonic generation
Nature Communications Open Access 20 April 2023
-
Electrical and magnetic anisotropies in van der Waals multiferroic CuCrP2S6
Nature Communications Open Access 15 February 2023
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Maxwell, J. C. A dynamical theory of the electromagnetic field. Phil. Trans. R. Soc. Lond. 155, 459–512 (1865).
Landau, L. D. & Lifshitz, E. M. The Classical Theory of Fields 2nd edn (Pergamon, London, 1962).
Aharonov, Y. & Bohm, D. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959).
Aharonov, Y. & Casher, A. Topological quantum effects for neutral particles. Phys. Rev. Lett. 53, 319–321 (1984).
Smolenskii, G. A. & Chupis, I. E. Ferroelectromagnets. Usp. Fiz. Nauk 137, 415–448 (1982); Sov. Phys. Usp. 25, 475–493 (1982).
Jona, F. & Shirane, G. Ferroelectric Crystals (Dover, New York, 1993).
Schmid, H. Multi-ferroic magnetoelectrics. Ferroelectrics 162, 317–338 (1994).
Hill, N. A. Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000).
Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press, Oxford, 2001).
Khomskii, D. I. Magnetism and ferroelectricity: why do they so seldom coexist? Bull. Am. Phys. Soc. C 21.002 (2001).
Katsufuji, T. et al. Dielectric and magnetic anomalies and spin frustration in hexagonal RMnO3 (R = Y, Yb, and Lu). Phys. Rev. B 64, 104419 (2001).
Kimura, T. et al. Magnetocapacitance effect in multiferroic BiMnO3 . Phys. Rev. B 67, 180401 (2003).
Kimura, T. et al. Magnetic control of ferroelectic polarization. Nature 426, 55–58 (2003).
Hur, N. et al. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392–395 (2004).
Lawes, G. et al. Magnetically driven ferroelectric order in Ni3V2O8 . Phys. Rev. Lett. 95, 087205 (2005).
Kimura T., Lashley, J. C. & Ramirez, A. P. Inversion-symmetry breaking in the noncollinear magnetic phase of the triangular-lattice antiferromagnet CuFeO2 . Phys. Rev. B 73, 220401(R) (2006).
Yamasaki, Y. et al. Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide. Phys. Rev. Lett. 96, 207204 (2006).
Taniguchi, K., Abe, N., Takenobu, T., Iwasa, Y. & Arima, T. Ferroelectric polarization flop in a frustrated magnet MnWO4 induced by a magnetic field. Phys. Rev. Lett. 97, 097203 (2006).
Heyer, O. et al. A new multiferroic material: MnWO4 . J. Phys. Condens. Matter 18, L471–L475 (2006).
Kimura, T., Lawes, G. & Ramirez, A. P. Electric polarization rotation in a hexaferrite with long-wavelength magnetic structures. Phys. Rev. Lett. 94, 137201 (2005).
Bar'yakhtar, V. G. & Chupis, I. E. Phenomenological theory of a ferroelectric magnet. Sov. Phys. Solid State 10, 2818–2821 (1969).
Bary'achtar, V. G., L'vov, V. A. & Jablonskii, D. A. Theory of inhomogeneous magnetoelectric effect. JETP Lett. 37, 673 (1983).
Stefanovskii, E. P. & Jablonskii, D. A. Theory of electrical polarization of multisublattice orthorhombic antiferromagnets with a double-exchange superlattice. Sov. J. Low Temp. Phys. 12, 478–480 (1986).
Katsura, H., Nagaosa, N. & Balatsky, V. Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95, 057205 (2005).
Harris, A. B., Yildirim, T., Aharony, A. & Entin-Wohlman, O. Towards a microscopic model of magnetoelectric interactions in Ni3V2O8 . Phys. Rev. B 73, 184433 (2006).
Mostovoy, M. Ferroelectricity in spiral magnets. Phys. Rev. Lett. 96, 067601 (2006).
Sergienko, I. A. & Dagotto, E. Role of the Dzyaloshinskii–Moriya interaction in multiferroic perovskites. Phys. Rev. B 73, 094434 (2006).
Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D 38, R123 (2005).
Khomskii, D. I. Multiferroics: different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 306, 1 (2006).
Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).
Van Aken, B. B., Palstra, T. T. M., Filippetti, A. & Spaldin, N. A. The origin of ferroelectricity in magnetoelectric YMnO3 . Nature Mater. 3, 164–170 (2004).
Seshadri, R. & Hill, N. A. Visualizing the role of Bi 6s “lone pairs” in the off-center distortion in ferromagnetic BiMnO3 . Chem. Mater. 13, 2892 (2001).
Son, J. Y., Kim, B. G., Kim, C. H. & Cho, J. H. Writing polarization bits on the multiferroic BiMnO3 thin film using Kelvin probe force microscope. Appl. Phys. Lett. 84, 4971–4973 (2004).
Yang, C. H. et al. Resonant x-ray scattering study on multiferroic BiMnO3 . Phys. Rev. B 73, 224112 (2006).
Levanyuk, A. P. & Sannikov, D. G. Improper ferroelectrics. Sov. Phys. Usp. 17, 199–214 (1974).
Fennie, C. J. & Rabe, K. M. Ferroelectric transition in YMnO3 from first principles. Phys. Rev. B 72, 100103 (2005).
Verwey, E. J. W. & Haayman, P. W. Electronic conductivity and transition point of magnetite. Physica 8, 979 (1941).
Efremov, D. V., van den Brink, J. & Khomskii, D. I. Bond-versus site-centered ordering and possible ferroelectricity in manganites. Nature Mater. 3, 853–856 (2004).
Tokunaga, Y. et al. Rotation of orbital stripes and the consequent charge-polarized state in bilayer manganites. Nature Mater. 5, 937–941 (2006).
Ikeda, N. et al. Ferroelectricity from iron valence ordering in the charge-frustrated LuFe2O4 . Nature 436, 1136–1138 (2005).
Hur, N. et al. Colossal magnetodielectric effects in DyMn2O5 . Phys. Rev. Lett. 93, 107207 (2004).
Goto T. et al. Ferroelectricity and giant magnetocapacitance in perovskite rare-earth manganites. Phys. Rev. Lett. 92, 257201 (2004).
Kenzelmann, M. et al. Magnetic inversion symmetry breaking and ferroelectricity in TbMnO3 . Phys. Rev. Lett. 95, 087206 (2005).
Quezel-Ambrunaz, S., Bertaut, F. & Buisson, G. Structure of TMn2O5 compounds of rare earth and manganese oxides. Compt. Rend. 258, 3025–3027 (1964).
Schieber, M. et al. Magnetocrystalline anisotropy of rare-earth manganites. J. Appl. Phys. 44, 1864–1867 (1973).
Golovenchits, E. I., Morozov, N. V., Sanina, V. A. & Sapozhnikova, L. M. Correlation of magnetic and dielectric properties in EuMn2O5 single crystals. Sov. Phys. Solid State 34, 56–59 (1992).
Saito, K. & Kohn, K. Magnetoelectric effect and low-temperature phase transitions of TbMn2O5 . J. Phys. Condens. Matter 7, 2855–2863 (1995).
Inomata, A. & Kohn, K., Pyroelectric effect and possible ferroelectric transition of helimagnetic GdMn2O5, TbMn2O5 and YMn2O5 . J. Phys. Condens. Matter 8, 2673–2678 (1996).
Gardner, P. P., Wilkinson, C., Forsyth, J. B. & Wanklyn, B. M. The magnetic structures of the rare-earth manganates ErMn2O5 and TbMn2O5 . J. Phys. C: Solid State Phys. 21, 5653–5661 (1998).
Dzyaloshinskii, I. Theory of helical structures in antiferromagnets I: Nonmetals. Sov. Phys. JETP 19, 960–971 (1964).
Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).
Cheong, S. -W., Thompson, J. D. & Fisk, Z. Metamagnetism in La2CuO4 . Phys. Rev. B 39, 4395–4398 (1989).
Kadomtseva, A. M. et al. Space-time parity violation and magnetoelectric interactions in antiferromagnets. JETP Lett. 79, 571–581 (2004).
Kimura, T., Lawes G., Goto, T., Tokura Y. & Ramirez, A. P. Magnetoelectric phase diagrams of orthorhombic RMnO3 (R = Gd, Tb, and Dy). Phys. Rev. B 71, 224425 (2005).
Noda, K. et al. Magnetic-field-induced switching between ferroelectric phases in orthorhombic-distortion-controlled RMnO3 . J. Appl. Phys. 99, 08S905 (2006).
Hemberger, J. et al. The multiferroic phases of (Eu:Y)MnO3 . Preprint at <http://arxiv.org/cond-mat/0603258> (2006).
Chapon, L. C. et al. Structural anomalies and multiferroic behavior in magnetically frustrated TbMn2O5 . Phys. Rev. Lett. 93, 177402 (2004).
Chapon, L. C. et al. Ferroelectricity induced by acentric spin-density waves in YMn2O5 . Phys. Rev. Lett. 96, 097601 (2006).
Aliouane, N. et al. Field-induced linear magnetoelastic coupling in multiferroic TbMnO3 . Phys. Rev. B 73, R020102 (2006).
Sergienko, I. A., Sen, C., Dagotto, E. Ferroelectricity in the magnetic E-phase of orthorhombic perovskites. <arXiv/cond-mat/0608025> (2006).
Fisher, M. E. & Selke, W. Infinitely many commensurate phases in a simple Ising model. Phys. Rev. 44, 1502 (1980).
Canfield, P. C., Thompson, J. D., Cheong, S. -W. & Rupp, L. W. Extraordinary pressure dependence of the metal-to-insulator transition in the charge-transfer compounds neodymium nickel oxide and praseodymium nickel oxide (NdNiO3 and PrNiO3). Phys. Rev. B 47, 12357 (1993).
Alonso, J. A. et al. Charge disproportionation in RNiO3 perovskites: simultaneous metal–insulator and structural transition in YNiO3 . Phys. Rev. Lett. 82, 3871–2874 (1999).
Torrance, J. B., Lacorre, P. & Nazzal, A. I. Systematic study of insulator–metal transitions in perovskite RNiO3 (R = Pr, Nd, Sm, Eu) due to closing of charge-transfer gap. Phys. Rev. B 45, 8209–8212 (1992).
Fiebig, M., Lottermoser, T., Fröhlich, D., Goltsev, A. V. & Pisarev R. V. Observation of coupled magnetic and electric domains. Nature 419, 818 (2002).
Lottermoser, T. et al. Magnetic phase control by an electric field. Nature 430 541 (2004).
Lorenz, B., Litvinchuk, A. P., Gospodinov, M. M. & Chu, C. W. Field-induced reentrant novel phase and a ferroelectric-magnetic order coupling in HoMnO3 . Phys. Rev. Lett. 92, 087204 (2004).
Van Suchtelen, J. Product properties: A new application of composite materials. Philips Res. Rep. 27, 28–37 (1972).
Ryu, J., Priya, S., Uchino, K. & Kim, H. E. Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials. J. Electroceram. 8, 107–119 (2002).
Zheng, H. et al. Multiferroic BaTiO3–CoFe2O4 nanostructures. Science 303, 661–663 (2004).
Ramesh, R. & Spaldin, N. Multiferroics: progress and prospects in thin films. Nature Mater. 6, 21–29 (2006).
Baryakhtar, V. G. & Chupis, I. E. Quantum theory of oscillations in a ferroelectric ferromagnet. Sov. Phys. Solid State 11, 2628–2631 (1970).
Akhiezer, I. A. & Davydov, L. N. Coupled electromagnetic-spin waves in magnetically ordered ferroelectrics. Sov. Phys. Solid State 12, 2563–2565 (1971).
Chupis, I. E. Magnetoelectric waves in ferroelectric antiferromagnets with exchange coupled electric and magnetic polarizations. Sov. J. Low Temp. Phys. 2, 307–310 (1976).
Sirenko A. A. et al. Soft-mode hardening in SrTiO3 thin films. Nature 404, 373–376 (2000).
Katsura, H., Balatsky, A. V. & Nagaosa, N. Dynamical magneto-electric coupling in helical magnets. Preprint at <http://arxiv.org/cond-mat/0602547> (2006).
Golovenchits, E. I. & Sanina, V. A. Magnetic and magneto-lattice dynamics in GdMn2O5 . JETP Lett. 78, 88–91 (2003).
Pimenov, A. et al. Possible evidence for electromagnons in multiferroic manganites. Nature Phys. 2, 97–100 (2006).
Sushkov, A. B. et al. Electromagnons in multiferroic YMn2O5 and TbMn2O5 . Preprint at <http://arxiv.org/cond-mat/0608707> (2006).
Acknowledgements
We thank Y. J. Choi, Y. Horibe, D. I. Khomskii, S. Y. Park and P. Radaelli for discussions, and A. F. Garcia-Flores, E. Granado and T. Kimura for providing figures. S.W.C. was supported by the National Science Foundation-MRSEC. M.M. acknowledges support by the MSCplus program, DFG (Mercator fellowship), and the hospitality of Cologne University.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Cheong, SW., Mostovoy, M. Multiferroics: a magnetic twist for ferroelectricity. Nature Mater 6, 13–20 (2007). https://doi.org/10.1038/nmat1804
Issue Date:
DOI: https://doi.org/10.1038/nmat1804
This article is cited by
-
Magnetoelectric coupling in multiferroics probed by optical second harmonic generation
Nature Communications (2023)
-
Electrical and magnetic anisotropies in van der Waals multiferroic CuCrP2S6
Nature Communications (2023)
-
Multi-state data storage in a two-dimensional stripy antiferromagnet implemented by magnetoelectric effect
Nature Communications (2023)
-
Emerging ferroelectricity and piezoelectric energy harvesting properties in lead-free zinc titanate nanocrystals
Journal of Materials Science (2023)
-
Electronic structure, optical and Mössbauer investigations of ferroelectric [Pb(Fe0.5Nb0.5)O3]0.2-[(Ca0.2Sr0.8)TiO3]0.8
Pramana (2023)