Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atomic structure of the binary icosahedral Yb–Cd quasicrystal

Abstract

Icosahedral quasicrystals (i-QCs) are long-range ordered solids that show non-crystallographic symmetries such as five-fold rotations. Their detailed atomic structures are still far from completely understood, because most stable i-QCs form as ternary alloys suffering from chemical disorder. Here, we present the first detailed structure solution of i-YbCd5.7, one of the very few stable binary i-QCs, by means of X-ray structure determination. Three building units with unique atomic decorations arrange quasiperiodically and fill the space. These also serve as building units in the periodic approximant crystals. The structure is not only chemically feasible, but also provides a seamless structural understanding of the i-YbCd5.7 phase and its series of related i-QCs and approximant crystals, revealing hierarchic features that are of considerable physical interest.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Approximants, building units and linkages.
Figure 2: Reconstructed 6D electron densities for the i-YbCd5.7 QC and observed atomic shells.
Figure 3: Occupation domains of the i-YbCd5.7 QC model.
Figure 4: Ideal structure of the i-YbCd5.7 QC.
Figure 5: Inflation properties of the i-YbCd5.7 QC.

Similar content being viewed by others

References

  1. Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984).

    Article  CAS  Google Scholar 

  2. Janot, C. Quasicrystals: A Primer (Oxford Univ. Press, New York, 1992).

    Google Scholar 

  3. Stadnik, Z. M. (ed.) Physical Properties of Quasicrystals (Springer, Berlin, 1999).

  4. Abe, E., Yan, Y. & Pennycook, S. J. Quasicrystals as cluster aggregates. Nature Mater. 3, 759–767 (2004).

    Article  CAS  Google Scholar 

  5. Janssen, T. Crystallography of quasi-crystals. Acta Crystallogr. A 42, 261–271 (1986).

    Article  Google Scholar 

  6. Yamamoto, A. Crystallography of quasiperiodic crystals. Acta Crystallogr. A 52, 509–560 (1996).

    Article  Google Scholar 

  7. Yamamoto, A., Takakura, H. & Tsai, A. P. Six-dimensional model of icosahedral Al-Pd-Mn quasicrystals. Phys. Rev. B 68, 094201 (2003).

    Article  Google Scholar 

  8. Henley, C. L., de Boissieu, M. & Steurer, W. Discussion on clusters, phasons and quasicrystal stabilisation. Phil. Mag. 86, 1131–1151 (2006).

    Article  CAS  Google Scholar 

  9. Tsai, A. P., Guo, J. Q., Abe, E., Takakura, H. & Sato, T. J. A stable binary quasicrystal. Nature 408, 537–538 (2000).

    Article  CAS  Google Scholar 

  10. Guo, J. Q., Abe, E. & Tsai, A. P. Stable icosahedral quasicrystals in binary Cd-Ca and Cd-Yb systems. Phys. Rev. B 62, R14605–R14608 (2000).

    Article  CAS  Google Scholar 

  11. Maezawa, R., Kashimoto, S. & Ishimasa, T. Icosahedral quasicrystals in Zn-T-Sc (T=Mn, Fe, Co or Ni) alloys. Phil. Mag. Lett. 84, 215–223 (2004).

    Article  CAS  Google Scholar 

  12. Palenzona, A. The ytterbium-cadmium system. J. Less-Common Met. 25, 367–372 (1971).

    Article  CAS  Google Scholar 

  13. Gómez, C. P. & Lidin, S. Comparative structural study of the disordered MCd6 quasicrystal approximants. Phys. Rev. B 68, 024203 (2003).

    Article  Google Scholar 

  14. Gómez, C. P. & Lidin, S. Structure of Ca13Cd76: A novel approximant to the MCd5.7 quasicrystals (M=Ca, Yb). Angew. Chem. Int. Edn Engl. 40, 4037–4039 (2001).

    Article  Google Scholar 

  15. Gómez, C. P. Order and Disorder in the RE-Cd and Related Systems 54–64 (Stockholm Univ., Stockholm, 2003).

    Google Scholar 

  16. Elser, V. & Henley, C. L. Crystal and quasicrystal structures in Al-Mn-Si alloys. Phys. Rev. Lett. 55, 2883–2886 (1985).

    Article  CAS  Google Scholar 

  17. Samson, S. in Structural Chemistry and Molecular Biology (eds Rich, A. & Davidson, N.) 687–717 (Freeman, San Francisco, 1968).

    Google Scholar 

  18. Takakura, H., Shiono, M., Sato, T. J., Yamamoto, A. & Tsai, A. P. Ab Initio structure determination of icosahedral Zn-Mg-Ho quasicrystals by density modification method. Phys. Rev. Lett. 86, 236–239 (2001).

    Article  CAS  Google Scholar 

  19. Takakura, H., Yamamoto, A., Shiono, M., Sato, T. J. & Tsai, A. P. Ab initio structure determination of quasicrystals by density modification method. J. Alloys Compounds 342, 72–76 (2002).

    Article  CAS  Google Scholar 

  20. Takakura, H., Yamamoto, A., de Boissieu, M. & Tsai, A. P. Ab initio structure solution of icosahedral Cd-Yb quasicrystals by a density modification method. Ferroelectrics 305, 209–212 (2004).

    Article  CAS  Google Scholar 

  21. Henley, C. L. Sphere packings and local environments in Penrose tilings. Phys. Rev. B 34, 797–816 (1986).

    Article  CAS  Google Scholar 

  22. Kramer, P. & Neri, R. On Periodic and non-periodic space fillings of Em obtained by projection. Acta Crystallogr. A 40, 580–587 (1984).

    Article  Google Scholar 

  23. Yamamoto, A. Structure of an icosahedral Al-Mn quasicrystal. Phys. Rev. B 37, 6207–6214 (1988).

    Article  CAS  Google Scholar 

  24. Duneau, M. & Oguey, C. Ideal AlMnSi quasicrystal: a structural model with icosahedral clusters. J. Phys. (Paris) 50, 135–146 (1989).

    Article  CAS  Google Scholar 

  25. Mihalkovič, M., Zhu, W.-J., Henley, C. L. & Oxborrow, M. Icosahedral quasicrystal decoration models. I. geometrical principles. Phys. Rev. B 53, 9002–9020 (1996).

    Article  Google Scholar 

  26. Audier, M. & Guyot, P. in Extended Icosahedral Structures (eds Jarić, M. V. & Gratias, D.) 1–35 (Academic, New York, 1989).

    Book  Google Scholar 

  27. Janot, C. & de Boissieu, M. Quasicrystals as a hierarchy of clusters. Phys. Rev. Lett. 72, 1674–1677 (1994).

    Article  CAS  Google Scholar 

  28. Henley, C. L. Cell geometry for cluster-based quasicrystal models. Phys. Rev. B 43, 993–1020 (1991).

    Article  CAS  Google Scholar 

  29. Mihalkovič, M. & Widom, M. Canonical cell model of cadmium-based icosahedral alloys. Phil. Mag. 86, 519–527 (2006).

    Article  Google Scholar 

  30. Lubensky, T. C., Ramaswamy, S. & Toner, J. Hydrodynamics of icosahedral quasicrystals. Phys. Rev. B 32, 7444–7452 (1985).

    Article  CAS  Google Scholar 

  31. Ishii, Y. & Fujiwara, T. Hybridization mechanism for cohesion of Cd-based quasicrystals. Phys. Rev. Lett. 87, 206408 (2001).

    Article  CAS  Google Scholar 

  32. Yang, Q. B. Quasicrystal model based on a series of supercubic crystal structures consisting of triacontahedra or Mackay icosahedra. Phil. Mag. B 61, 155–175 (1990).

    Article  CAS  Google Scholar 

  33. Fowler, H. A., Mozer, B. & Sims, J. Triple-shell symmetry in α-(Al,Si)-Mn. Phys. Rev. B 37, 3906–3913 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the European Synchrotron Radiation Facility and the French Cooperative Research Group for the allocation of beam time on the D2AM beam line. We thank N. Boudet and J. F. Berar for their assistance on D2AM during the experiment. C.P.G. has been financially supported by the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the results and commented on the manuscript. H.T. and C.P.G. contributed equally to the final form of the manuscript.

Corresponding author

Correspondence to Hiroyuki Takakura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figure S1 (PDF 503 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takakura, H., Gómez, C., Yamamoto, A. et al. Atomic structure of the binary icosahedral Yb–Cd quasicrystal. Nature Mater 6, 58–63 (2007). https://doi.org/10.1038/nmat1799

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1799

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing