Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes

Abstract

We present a rational and general method to fabricate a high-densely packed and aligned single-walled carbon-nanotube (SWNT) material by using the zipping effect of liquids to draw tubes together. This bulk carbon-nanotube material retains the intrinsic properties of individual SWNTs, such as high surface area, flexibility and electrical conductivity. By controlling the fabrication process, it is possible to fabricate a wide range of solids in numerous shapes and structures. This dense SWNT material is advantageous for numerous applications, and here we demonstrate its use as flexible heaters as well as supercapacitor electrodes for compact energy-storage devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Liquid-induced collapse.
Figure 2: SWNT solid properties.
Figure 3: Engineerable shape.
Figure 4: Applications.

Similar content being viewed by others

References

  1. Frank, S. P., Poncharal, P., Wang, Z. L. & de Heer, W. A. Carbon nanotube quantum resistors. Science 280, 1744–1746 (1998).

    Article  Google Scholar 

  2. Liang, W. et al. Fabry–Perot interference in a nanotube electron waveguide. Nature 411, 665–669 (2001).

    Article  Google Scholar 

  3. Baughman, R. H., Zakhidov, A. A. & de Heer, W. A. Carbon nanotubes-the route toward applications. Science 297, 787–792 (2002).

    Article  Google Scholar 

  4. Kim, P., Shi, L., Majumdar, A. & McEuen, P. L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001).

    Article  Google Scholar 

  5. Kociak, M. et al. Superconductivity in ropes of single-walled carbon nanotubes. Phys. Rev. Lett. 86, 2416–2419 (2001).

    Article  Google Scholar 

  6. Tang, Z. K. et al. Superconductivity in 4 Angstrom single-walled carbon nanotubes. Science 292, 2462–2465 (2001).

    Article  Google Scholar 

  7. Wong, E. W., Sheehan, P. E. & Lieber, C. M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997).

    Article  Google Scholar 

  8. Walters, D. A. et al. Elastic strain of freely suspended single-walled carbon nanotube ropes. Appl. Phys. Lett. 74, 3803–3805 (1999).

    Article  Google Scholar 

  9. Yu, M.-F., Files, B. S., Arepalli, S. & Ruoff, R. S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552–5555 (2000).

    Article  Google Scholar 

  10. Thess, A. et al. Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487 (1996).

    Article  Google Scholar 

  11. Vigolo, B. et al. Macroscopic fibers and ribbon of oriented carbon nanotubes. Science 290, 1331–1334 (2000).

    Article  Google Scholar 

  12. Zhu, H. W. et al. Direct synthesis of long single-walled carbon nanotube strands. Science 296, 884–886 (2002).

    Article  Google Scholar 

  13. Ericson, L. M. et al. Macroscopic, neat, single-walled carbon nanotube fibers. Science 305, 1447–1450 (2004).

    Article  Google Scholar 

  14. Li, Y., Kinloch, I. A. & Windle, A. H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304, 276–278 (2004).

    Article  Google Scholar 

  15. Jiang, K., Li, Q. & Fan, S. Spinning continuous carbon nanotube yarns. Nature 419, 801 (2002).

    Article  Google Scholar 

  16. Zhang, M. et al. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306, 1358–1361 (2004).

    Article  Google Scholar 

  17. Rinzler, A. G. et al. Large-scale purification of single-wall carbon nanotubes: Process, product, and characterization. Appl. Phys. A 67, 29–37 (1998).

    Article  Google Scholar 

  18. Ren, Z. F. et al. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105–1107 (1998).

    Article  Google Scholar 

  19. Fan, S. et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283, 512–514 (1999).

    Article  Google Scholar 

  20. Murakami, Y. et al. Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chem. Phys. Lett. 385, 298–303 (2004).

    Article  Google Scholar 

  21. Hata, K. et al. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306, 1362–1364 (2004).

    Article  Google Scholar 

  22. Cao, A., Dickrell, P. L., Sawyer, W. G., Ghasemi-Nejhad, M. N. & Ajayan, P. M. Super compressible foamlike carbon nanotube films. Science 310, 1307–1310 (2005).

    Article  Google Scholar 

  23. Zhang, M. et al. Strong, transparent, multifunctional, carbon nanotube sheets. Science 309, 1215–1219 (2005).

    Article  Google Scholar 

  24. Nguyen, C. V. et al. Preparation of nucleic acid functionalized carbon nanotube arrays. Nano Lett. 2, 1079–1081 (2002).

    Article  Google Scholar 

  25. Lau, K. K. S. et al. Superhydrophobic carbon nanotube forests. Nano Lett. 3, 1701–1705 (2003).

    Article  Google Scholar 

  26. Fan, J. G., Dyer, D., Zhang, G. & Zhao, Y.-P. Nanocarpet effect: Pattern formation during the wetting of vertically aligned nanorod arrays. Nano Lett. 4, 2133–2138 (2004).

    Article  Google Scholar 

  27. Correa-Duarte, M. A. et al. Fabrication and biocompatibility of carbon nanotube-based 3D networks as scafolds for cell seeding and growth. Nano Lett. 4, 2233–2236 (2004).

    Article  Google Scholar 

  28. Liu, H. et al. Self-assembly of large-scale micropatterns on aligned carbon nanotube films. Angew. Chem. 43, 1146–1149 (2004).

    Article  Google Scholar 

  29. Chakrapani, N., Wei, B., Carrillo, A., Ajayan, P. & Kane, R. S. Capillary-driven assembly of two-dimensional cellular carbon nanotube foams. Proc. Natl Acad. Sci. 101, 4009–4013 (2004).

    Article  Google Scholar 

  30. Ko, H., Peleshanko, S. & Tsukruk, V. V. Combing and bending of carbon nanotube arrays with confined microfluidic flow on patterned surfaces. J. Phys. Chem. 108, 4385–4393 (2004).

    Article  Google Scholar 

  31. Whitten, P. G., Spinks, G. M. & Wallace, G. G. Mechanical properties of carbon nanotube paper in ionic liquid and aqueous electrolytes. Carbon 43, 1891–1896 (2005).

    Article  Google Scholar 

  32. Zhong, G. et al. Large-area synthesis of carbon nanofibers by low-power microwave plasma-assisted CVD. Chem. Vapor Dep. 10, 125–128 (2004).

    Article  Google Scholar 

  33. Futaba, D. N. et al. 84% Catalyst activity of water-assisted growth of single walled carbon nanotube forest characterization by a statistical and macroscopic approach. J. Phys. Chem. B 110, 8035–8038 (2006).

    Article  Google Scholar 

  34. Duesberg, G. S., Loa, I., Burghard, M., Syassen, K. & Roth, S. Polarized raman spectroscopy on isolated single-wall carbon nanotubes. Phys. Rev. Lett. 85, 5436–5439 (2000).

    Article  Google Scholar 

  35. Murakami, Y. et al. Polarization dependence of resonant Raman scattering from vertically aligned single-walled carbon nanotube films. Phys. Rev. B 71, 085403 (2005).

    Article  Google Scholar 

  36. Klug, H. & Alexander, L. E. (eds) in X-ray Diffraction Procedures 2nd edn (Wiley, New York, 1974).

  37. Lovell, R. & Mitchell, G. R. Moleular-orientation distribution derived from an arbitrary reflection. Acta Crystallogr. A 37, 135–137 (1981).

    Article  Google Scholar 

  38. Yang, C.-M., Kaneko, K., Yudasaka, M. & Iijima, S. Effect of purification on pore structure of hipco single-walled carbon nanotube aggregates. Nano Lett. 2, 385–388 (2002).

    Article  Google Scholar 

  39. Zhao, D. et al. Triblock copolymer synthesis of mesoporous silica with periodic 50–300 Angstrom pores. Science 279, 548–552 (1998).

    Article  Google Scholar 

  40. Zhao, D. et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant synthesis of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120, 6024–6036 (1998).

    Article  Google Scholar 

  41. Yamada, T., Zhou, H.S., Asai, K. & Honma, I. Pore size controlled mesoporous silicate powder prepared by triblock copolymer templates. Mater. Lett. 56, 93–96 (2002).

    Article  Google Scholar 

  42. Shirashi, S., Kurihara, H., Okabe, K., Hulicova, D. & Oya, A. Electric double layer capacitance of highly pure single-walled carbon nanotubes (HiPco ™ Buckytubes ™) in propylene carbonate electrolytes. Electrochem. Commun. 4, 593–598 (2002).

    Article  Google Scholar 

  43. Niu, C., Sichel, E. K., Hoch, R., Moy, D. & Tennent, H. High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 70, 1480–1482 (1997).

    Article  Google Scholar 

  44. Du, C., Yeh, J. & Pan, N. High power density supercapacitors using locally aligned carbon nanotube electrodes. Nanotechnology 16, 350–353 (2005).

    Article  Google Scholar 

  45. Xu, B. et al. Room temperature molten salt as electrolyte for carbon nanotube-based electric double layer capacitors. J. Power Sources 158, 773–778 (2006).

    Article  Google Scholar 

  46. Hiraoka, T. et al. Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils. J. Am. Chem. Soc. 128, 13338–13339 (2006).

    Article  Google Scholar 

  47. International Tables for X-ray Crystallography Vol. II (Reidel, Boston, MA, 1959 and 1972).

Download references

Acknowledgements

We gratefully acknowledge S. Usuba for the use of the microhardness tester and the contributions by T. Namai, M. Mizuno, A. Otsuka, K. Ozawa and S. Yamada. We also gratefully acknowledge M. Goto and K. Nakayama for their discussions and assistance on X-ray diffraction. Partial support by the New Energy and Industrial Technology Development Organization (NEDO) Nano-Carbon Technology project is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

D.N.F. and K.H. conceived and designed the experiments; D.N.F. performed the experiments; T.Y. and T.H. contributed to material analyses; Y.H. contributed to material preparation; T.H., O.T. and H.H. contributed to super-capacitor preparation/characterization; Y.K. contributed XRD analysis tools and D.N.F. and K.H. co-wrote the paper.

Corresponding author

Correspondence to Kenji Hata.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information and figures S1-S6 (PDF 397 kb)

Supplementary Information

Supplementary movie S1 (MOV 1010 kb)

Supplementary Information

Supplementary movie S2 (MOV 2182 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Futaba, D., Hata, K., Yamada, T. et al. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nature Mater 5, 987–994 (2006). https://doi.org/10.1038/nmat1782

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1782

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing