Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transformation pathways of silica under high pressure

Abstract

Network-forming oxides with rigid polyhedral building blocks often possess significant capacity for densification under pressure owing to their open structures. The high-pressure behaviour of these oxides is key to the mechanical properties of engineering materials and geological processes in the Earth’s interior. Concurrent molecular-dynamics simulations and first-principles calculations reveal that this densification follows a ubiquitous two-stage mechanism. First, a compact high-symmetry anion sublattice forms, as controlled by strong repulsion between the large oxygen anions, and second, cations redistribute onto the newly created interstices. The same mechanism is observed for two different polymorphs of silica, and in the particular case of cristobalite, is corroborated by the experimental finding of a previously unidentified metastable phase. Our simulations not only clarify the nature of this phase, but also identify its occurrence as key evidence in support of this densification mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Density and structural evolution of cristobalite silica under pressure.
Figure 2: Structural and dynamical properties of simulated structures at 0, 20 and 25 GPa.
Figure 3: Calculated total energies as a function of volume for α-cristobalite, X-I phase and stishovite.
Figure 4: Transformation mechanisms.

Similar content being viewed by others

References

  1. Kingma, K. J., Cohen, R. E., Hemley, R. J. & Mao, H.-K. Transformation of stishovite to a denser phase at lower-mantle pressures. Nature 374, 243–245 (1995).

    Article  Google Scholar 

  2. Dubrovinsky, L. S. et al. Experimental and theoretical identification of a new high-pressure phase of silica. Nature 388, 362–365 (1997).

    Article  Google Scholar 

  3. Andrault, D., Fiquet, G., Guyot, F. & Hanfland, M. Pressure-induced Landau-type transition in stishovite. Science 282, 720–724 (1998).

    Article  Google Scholar 

  4. Gratz, A. J., DeLoach, L. D., Clough, T. M. & Nellis, W. J. Shock amorphization of cristobalite. Science 259, 663–666 (1993).

    Google Scholar 

  5. Hobbs, L. W. The role of topology and geometry in the irradiation-induced amorphization of network structures. J. Non-Cryst. Solids 182, 27–39 (1995).

    Article  Google Scholar 

  6. McMeeking, R. M. & Evans, A. G. Mechanics of transformation-toughening in brittle materials. J. Am. Ceram. Soc. 65, 242–246 (1982).

    Article  Google Scholar 

  7. Tsuchida, Y. & Yagi, T. New pressure-induced transformations of silica at room temperature. Nature 347, 267–269 (1990).

    Article  Google Scholar 

  8. Hemley, R. J., Prewitt, C. T. & Kingma, K. J. High-pressure behavior of silica. Rev. Mineral. 29, 41–81 (1994).

    Google Scholar 

  9. Wentzcovitch, R. M., da Silva, C., Chelikowsky, J. R. & Binggeli, N. A new phase and pressure induced amorphization in silica. Phys. Rev. Lett. 80, 2149–2152 (1998).

    Article  Google Scholar 

  10. Stolper, E. M. & Ahrens, T. J. On the nature of pressure-induced coordination changes in silicate melts and glasses. Geophys. Res. Lett. 14, 1231–1233 (1987).

    Article  Google Scholar 

  11. Tsuchida, Y. & Yagi, T. A new, post-stishovite high-pressure polymorph of silica. Nature 340, 217–220 (1989).

    Article  Google Scholar 

  12. Yamakata, M. & Yagi, T. New stishovite-like phase of silica formed by hydrostatic compression of cristobalite. Proc. Jpn Acad. B 73, 85–88 (1997).

    Article  Google Scholar 

  13. Yahagi, Y., Yagi, T., Yamawaki, H. & Aoki, H. Infrared-absorption spectra of the high-pressure phases of cristobalite and their coordination numbers of silicon atoms. Solid State Commun. 89, 945–948 (1994).

    Article  Google Scholar 

  14. Prokopenko, V. B., Dubrovinsky, L. S., Dmitriev, V. & Weber, H. P. In situ characterization of phase transitions in cristobalite under high pressure by Raman spectroscopy and X-ray diffraction. J. Alloys Compounds 327, 87–95 (2001).

    Article  Google Scholar 

  15. Palmer, D. C., Hemley, R. J. & Prewitt, C. T. Raman-spectroscopic study of high-pressure phase transitions in cristobalite. Phys. Chem. Miner. 21, 481–488 (1994).

    Article  Google Scholar 

  16. Hundt, R., Schön, J. C., Hannemann, A. & Jansen, M. Determination of symmetries and idealized cell parameters for simulated structures. J. Appl. Crystallogr. 32, 413–416 (1999).

    Article  Google Scholar 

  17. Teter, D. M., Hemley, R. J., Kresse, G. & Hafner, J. High pressure polymorphism in silica. Phys. Rev. Lett. 80, 2145–2148 (1998).

    Article  Google Scholar 

  18. Karki, B. B., Warren, M. C., Stixrude, L., Ackland, G. J. & Crain, J. Ab initio studies of high-pressure structural transformations in silica. Phys. Rev. B 55, 3465–3471 (1997).

    Article  Google Scholar 

  19. Klug, D. D. et al. Ab initio molecular dynamics study of the pressure-induced phase transformations in cristobalite. Phys. Rev. B 63, 104106 (2001).

    Article  Google Scholar 

  20. Chao, E. C. T., Fahey, J. J., Littler, J. & Milton, D. J. Stishovite, SiO2, a very high pressure new mineral from meteor crater, Arizona. J. Geophys. Res. 67, 419–421 (1962).

    Article  Google Scholar 

  21. Tsuneyuki, S., Matsui, Y., Aoki, H. & Tsukada, M. New pressure-induced structural transformations in silica obtained by computer simulation. Nature 339, 209–211 (1989).

    Article  Google Scholar 

  22. Demuth, T., Jeanvoine, Y., Hafner, J. & Ángyán, J. G. Polymorphism in silica studied in the local density and generalized-gradient approximations. J. Phys. Condens. Matter 11, 3833–3874 (1999).

    Article  Google Scholar 

  23. Stokes, H. T. & Hatch, D. M. Isotropy Subgroups of the 230 Crystallograhic Space Groups (World Scientific, Singapore, 1988).

    Google Scholar 

  24. O’Keeffe, M. & Hyde, B. G. Cristobalites and topologically-related structures. Acta Crystallogr. B 32, 2923–2936 (1976).

    Article  Google Scholar 

  25. Hemley, R. J., Badro, J. & Teter, D. M. in Physics Meets Mineralogy—Condensed Matter Physics in Geosciences (eds Aoki, H., Syono, Y. & Hemley, R. J.) 173–204 (Cambridge Univ. Press, Cambridge, England, 2000).

    Book  Google Scholar 

  26. Hazen, R. M., Finger, L. W., Hemley, R. J. & Mao, H. K. High-pressure crystal chemistry and amorphization of alpha-quartz. Solid State Commun. 72, 507–511 (1989).

    Article  Google Scholar 

  27. Binggeli, N. & Chelikowsky, J. R. Structural transformation of quartz at high pressures. Nature 353, 344–346 (1991).

    Article  Google Scholar 

  28. Kingma, K. J., Hemley, R. J., Mao, H. K. & Veblen, D. R. New high-pressure transformation in alpha-quartz. Phys. Rev. Lett. 70, 3927–3930 (1993).

    Article  Google Scholar 

  29. O’Keeffe, M. On the arrangements of ions in crystals. Acta Crystallogr. A 33, 924–927 (1977).

    Article  Google Scholar 

  30. Kingma, K. J., Meade, C., Hemley, R. J., Mao, H. K. & Veblen, D. R. Microstructural observations of α-quartz amorphization. Science 259, 666–669 (1993).

    Google Scholar 

  31. Badro, J., Barrat, J. L. & Gillet, P. Numerical simulation of α-quartz under nonhydrostatic compression: memory glass and five-coordinated crystalline phases. Phys. Rev. Lett. 76, 772–775 (1996).

    Article  Google Scholar 

  32. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  33. Ordejón, P., Artacho, E. & Soler, J. M. Self-consistent order-N density-functional calculations for very large systems. Phys. Rev. B 53, 10441–10444 (1996).

    Article  Google Scholar 

  34. Troullier, N. & Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991).

    Article  Google Scholar 

  35. Huang, L. P. & Kieffer, J. Molecular dynamics study of cristobalite silica using a charge transfer three-body potential: phase transformation and structural disorder. J. Chem. Phys. 118, 1487–1498 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

L.H. is grateful to R. Hundt for discussions on determining the symmetries of the simulated structures. This work was supported by the National Institute of Standards and Technology and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Kieffer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, L., Durandurdu, M. & Kieffer, J. Transformation pathways of silica under high pressure. Nature Mater 5, 977–981 (2006). https://doi.org/10.1038/nmat1760

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1760

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing