Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lithographically patterned nanowire electrodeposition

Abstract

Nanowire fabrication methods can be classified either as ‘top down’, involving photo- or electron-beam lithography, or ‘bottom up’, involving the synthesis of nanowires from molecular precursors. Lithographically patterned nanowire electrodeposition (LPNE) combines attributes of photolithography with the versatility of bottom-up electrochemical synthesis. Photolithography defines the position of a sacrificial nickel nanoband electrode, which is recessed into a horizontal trench. This trench acts as a ‘nanoform’ to define the thickness of an incipient nanowire during its electrodeposition. The electrodeposition duration determines the width of the nanowire. Removal of the photoresist and nickel exposes a polycrystalline nanowire — composed of gold, platinum or palladium — characterized by thickness and width that can be independently controlled down to 18 and 40 nm, respectively. Metal nanowires prepared by LPNE may have applications in chemical sensing and optical signal processing, and as interconnects in nanoelectronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: ‘Overetching’ of the nickel layer produces a horizontal trench originating at the edge of the photoresist.
Figure 3: The filling and the eventual overfilling of the trench with gold, platinum or palladium produces a distinctive wire electrodeposition-current transient.
Figure 5: Both the thickness of a nanowire produced by LPNE and its width may be independently controlled.
Figure 4: Examples of patterned nanowires prepared using LPNE.
Figure 6: A high degree of wire uniformity results in nanowires that are electrically continuous for up to 1.0 cm.

Similar content being viewed by others

References

  1. Spicer, D. F., Rodger, A. C. & Varnell, G. L. Computer-controlled pattern generating system for use with electron-beam writing instruments. J. Vac. Sci. Technol. 10, 1052–1055 (1973).

    Google Scholar 

  2. Varnell, G. L., Spicer, D. F. & Rodger, A. C. E-Beam writing techniques for semiconductor-device fabrication. J. Vac. Sci. Technol. 10, 1048–1051 (1973).

    Google Scholar 

  3. Vieu, C. et al. Electron beam lithography: Resolution limits and applications. Appl. Surf. Sci. 164, 111–117 (2000).

    Google Scholar 

  4. Berger, S. D. & Gibson, J. M. New approach to projection-electron lithography with demonstrated 0.1 μM linewidth. Appl. Phys. Lett. 57, 153–155 (1990).

    Google Scholar 

  5. Berger, S. D. et al. Projection electron-beam lithography—A new approach. J. Vac. Sci. Technol. B 9, 2996–2999 (1991).

    Google Scholar 

  6. Liddle, J. A. et al. Space-charge effects in projection electron-beam lithography: Results from the SCALPEL proof-of-lithography system. J. Vac. Sci. Technol. B 19, 476–481 (2001).

    Google Scholar 

  7. Jorritsma, J., Gijs, M. A. M., Kerkhof, J. M. & Stienen, J. G. H. General technique for fabricating large arrays of nanowires. Nanotechnology 7, 263–265 (1996).

    Google Scholar 

  8. Natelson, D., Willett, R. L., West, K. W. & Pfeiffer, L. N. Fabrication of extremely narrow metal wires. Appl. Phys. Lett. 77, 1991–1993 (2000).

    Google Scholar 

  9. Natelson, D., Willett, R. L., West, K. W. & Pfeiffer, L. N. Geometry-dependent dephasing in small metallic wires. Phys. Rev. Lett. 86, 1821–1824 (2001).

    Google Scholar 

  10. Melosh, N. A. et al. Ultrahigh-density nanowire lattices and circuits. Science 300, 112–115 (2003).

    Google Scholar 

  11. Thompson, M. A., Menke, E. J., Martens, C. C. & Penner, R. M. Shrinking nanowires by kinetically controlled electrooxidation. J. Phys. Chem. B 110, 36–41 (2006).

    Google Scholar 

  12. Nagale, M. P. & Fritsch, I. Individually addressable, submicrometer band electrode arrays. 1. Fabrication from multilayered materials. Anal. Chem. 70, 2902–2907 (1998).

    Google Scholar 

  13. Bard, A. J. Electrochemical Methods: Fundamentals and Applications (Wiley, New York, 2001).

    Google Scholar 

  14. Walter, E. C. et al. Noble and coinage metal nanowires by electrochemical step edge decoration. J. Phys. Chem. B 106, 11407–11411 (2002).

    Google Scholar 

  15. Durkan, C. & Welland, M. E. Size effects in the electrical resistivity of polycrystalline nanowires. Phys. Rev. B 61, 14215–14218 (2000).

    Google Scholar 

  16. Marzi, G. D., Iacopino, D., Quinn, A. J. & Redmond, G. Probing intrinsic transport properties of single metal nanowires: Direct-write contact formation using a focused ion beam. J. Appl. Phys. 96, 3458–3462 (2004).

    Google Scholar 

  17. Yang, F. Y. et al. Large magnetoresistance of electrodeposited single-crystal bismuth thin films. Science 284, 1335–1337 (1999).

    Google Scholar 

  18. Yang, F. Y. et al. Large magnetoresistance and finite-size effect in electrodeposited bismuth lines. J. Appl. Phys. 89, 7206–7208 (2001).

    Google Scholar 

  19. Chiu, P. & Shih, I. A study of the size effect on the temperature-dependent resistivity of bismuth nanowires with rectangular cross-sections. Nanotechnology 15, 1489–1492 (2004).

    Google Scholar 

  20. Fuchs, K. The conductivity of thin metallic films according to the electron theory of metals. Proc. Camb. Phil. Soc. 34, 100–108 (1938).

    Google Scholar 

  21. Sondheimer, E. H. The mean free path of electrons in metals. Adv. Phys. 1, 1–42 (1952).

    Google Scholar 

  22. Mayadas, A. F. & Shatzkes, M. Electrical-resistivity model for polycrystalline films—case of arbitrary reflection at external surfaces. Phys. Rev. B 1, 1382–1389 (1970).

    Google Scholar 

  23. Steinhogl, W., Schindler, G., Steinlesberger, G., Traving, M. & Engelhardt, M. Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller. J. Appl. Phys. 97, 023706 (2005).

    Google Scholar 

  24. Marom, H. & Eizenberg, M. The temperature dependence of resistivity in thin metal films. J. Appl. Phys. 96, 3319–3323 (2004).

    Google Scholar 

  25. Steinhogl, W., Schindler, G., Steinlesberger, G. & Engelhardt, M. Size-dependent resistivity of metallic wires in the mesoscopic range. Phys. Rev. B 66, 075414 (2002).

    Google Scholar 

Download references

Acknowledgements

The National Science Foundation funded this work through grant CHE-0111-557.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Penner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menke, E., Thompson, M., Xiang, C. et al. Lithographically patterned nanowire electrodeposition. Nature Mater 5, 914–919 (2006). https://doi.org/10.1038/nmat1759

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1759

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing