Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Exciton polarizability in semiconductor nanocrystals

Abstract

The response of charge to externally applied electric fields is an important basic property of any material system, as well as one critical for many applications. Here, we examine the behaviour and dynamics of charges fully confined on the nanometre length scale. This is accomplished using CdSe nanocrystals1,2,3 of controlled radius (1–2.5 nm) as prototype quantum systems. Individual electron–hole pairs are created at room temperature within these structures by photoexcitation and are probed by terahertz (THz) electromagnetic pulses4. The electronic response is found to be instantaneous even for THz frequencies, in contrast to the behaviour reported in related measurements for larger nanocrystals5 and nanocrystal assemblies6,7. The measured polarizability of an electron–hole pair (exciton) amounts to 104 Å3 and scales approximately as the fourth power of the nanocrystal radius. This size dependence and the instantaneous response reflect the presence of well-separated electronic energy levels induced in the system by strong quantum-confinement effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: THz electric-field waveform transmitted through an unexcited suspension of CdSe QDs and the photoinduced change in this waveform.
Figure 2: Spectral dependence of the change in the real (Δχs) and imaginary part (Δχs′′) of the photoinduced sheet susceptibility of the sample.
Figure 3: Polarizability of quantum-confined excitons in photoexcited CdSe QDs as a function of the QD radius R.

Similar content being viewed by others

References

  1. Woggon, U. Optical Properties of Semiconductor Quantum Dots (Springer, Berlin, 1997).

    Google Scholar 

  2. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  Google Scholar 

  3. Norris, D. J. & Bawendi, M. G. Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys. Rev. B 53, 16338–16346 (1996).

    Article  Google Scholar 

  4. Schmuttenmaer, C. A. Exploring dynamics in the far-infrared with terahertz spectroscopy. Chem. Rev. 104, 1759–1779 (2004).

    Article  Google Scholar 

  5. Beard, M. C., Turner, G. M. & Schmuttenmaer, C. A. Size-dependent photoconductivity in CdSe nanoparticles as measured by time-resolved terahertz spectroscopy. Nano Lett. 2, 983–987 (2002).

    Article  Google Scholar 

  6. Beard, M. C. et al. Electronic coupling in InP nanoparticle arrays. Nano Lett. 3, 1695–1699 (2003).

    Article  Google Scholar 

  7. Cooke, D. G. et al. Anisotropic photoconductivity of InGaAs quantum dot chains measured by terahertz pulse spectroscopy. Appl. Phys. Lett. 85, 3839–3841 (2004).

    Article  Google Scholar 

  8. Hines, M. A. & Guyot-Sionnest, P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 100, 468–471 (1996).

    Article  Google Scholar 

  9. Efros, A. L. & Rosen, M. The electronic structure of semiconductor nanocrystals. Annu. Rev. Mater. Sci. 30, 475–521 (2000).

    Article  Google Scholar 

  10. Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).

    Article  Google Scholar 

  11. Colvin, V. L., Schlamp, M. C. & Alivisatos, A. P. Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994).

    Article  Google Scholar 

  12. Ginger, D. S. & Greenham, N. C. Charge injection and transport in films of CdSe nanocrystals. J. Appl. Phys. 87, 1361–1368 (2000).

    Article  Google Scholar 

  13. Empedocles, S. A. & Bawendi, M. G. Quantum-confined Stark effect in single CdSe nanocrystallite quantum dots. Science 278, 2114–2117 (1997).

    Article  Google Scholar 

  14. Sacra, A., Norris, D. J., Murray, C. B. & Bawendi, M. G. Stark spectroscopy of CdSe nanocrystallites—the significance of transition linewidths. J. Chem. Phys. 103, 5236–5245 (1995).

    Article  Google Scholar 

  15. Seufert, J. et al. Stark effect and polarizability in a single CdSe/ZnSe quantum dot. Appl. Phys. Lett. 79, 1033–1035 (2001).

    Article  Google Scholar 

  16. Klimov, V. I. Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. J. Phys. Chem. B 104, 6112–6123 (2000).

    Article  Google Scholar 

  17. Beard, M. C., Turner, G. M. & Schmuttenmaer, C. A. Terahertz spectroscopy. J. Phys. Chem. B 106, 7146–7159 (2002).

    Article  Google Scholar 

  18. Groeneveld, R. H. M. & Grischkowsky, D. Picosecond time-resolved far-infrared experiments on carriers and excitons in GaAs-AlGaAs multiple-quantum wells. J. Opt. Soc. Am. B 11, 2502–2507 (1994).

    Article  Google Scholar 

  19. Hegmann, F. A., Tykwinski, R. R., Lui, K. P. H., Bullock, J. E. & Anthony, J. E. Picosecond transient photoconductivity in functionalized pentacene molecular crystals probed by terahertz pulse spectroscopy. Phys. Rev. Lett. 89, 227403 (2002).

    Article  Google Scholar 

  20. Thorsmolle, V. K. et al. Ultrafast conductivity dynamics in pentacene probed using terahertz spectroscopy. Appl. Phys. Lett. 84, 891–893 (2004).

    Article  Google Scholar 

  21. Huber, R. et al. How many-particle interactions develop after ultrafast excitation of an electron–hole plasma. Nature 414, 286–289 (2001).

    Article  Google Scholar 

  22. Shan, J., Wang, F., Knoesel, E., Bonn, M. & Heinz, T. F. Measurement of the frequency-dependent conductivity in sapphire. Phys. Rev. Lett. 90, 247401 (2003).

    Article  Google Scholar 

  23. Averitt, R. D. et al. Ultrafast conductivity dynamics in colossal magnetoresistance manganites. Phys. Rev. Lett. 87, 17401 (2001).

    Article  Google Scholar 

  24. Beard, M. C., Turner, G. M. & Schmuttenmaer, C. A. Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy. Phys. Rev. B 62, 15764–15777 (2000).

    Article  Google Scholar 

  25. Turchinovich, D. et al. Ultrafast polarization dynamics in biased quantum wells under strong femtosecond optical excitation. Phys. Rev. B 68, 241307 (2003).

    Article  Google Scholar 

  26. Muller, T., Parz, W., Strasser, G. & Unterrainer, K. Pulse-induced quantum interference of intersubband transitions in coupled quantum wells. Appl. Phys. Lett. 84, 64–66 (2004).

    Article  Google Scholar 

  27. Kaindl, R. A., Carnahan, M. A., Hagele, D., Lovenich, R. & Chemla, D. S. Ultrafast terahertz probes of transient conducting and insulating phases in an electron–hole gas. Nature 423, 734–738 (2003).

    Article  Google Scholar 

  28. Hendry, E. et al. Direct observation of electron-to-hole energy transfer in CdSe quantum dots. Phys. Rev. Lett. 96, 057408 (2006).

    Article  Google Scholar 

  29. Knoesel, E., Bonn, M., Shan, J. & Heinz, T. F. Charge transport and carrier dynamics in liquids probed by THz time-domain spectroscopy. Phys. Rev. Lett. 86, 340–343 (2001).

    Article  Google Scholar 

  30. Underwood, D. F., Kippeny, T. & Rosenthal, S. J. Ultrafast carrier dynamics in CdSe nanocrystals determined by femtosecond fluorescence upconversion spectroscopy. J. Phys. Chem. B 105, 436–443 (2001).

    Article  Google Scholar 

  31. Guyot-Sionnest, P., Shim, M., Matranga, C. & Hines, M. Intraband relaxation in CdSe quantum dots. Phys. Rev. B 60, R2181–R2184 (1999).

    Article  Google Scholar 

  32. Lide, D. R. Handbook of Chemistry and Physics (CRC Press, New York, 1999).

    Google Scholar 

  33. Choy, T. C. Effective Medium Theory—Principles and Applications (Oxford Science Publications, Oxford, 1999).

    Google Scholar 

  34. Gelinck, G. H. et al. Measuring the size of excitons on isolated phenylene-vinylene chains: From dimers to polymers. Phys. Rev. B 62, 1489–1491 (2000).

    Article  Google Scholar 

  35. Nahata, A., Weling, A. S. & Heinz, T. F. A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling. Appl. Phys. Lett. 69, 2321–2323 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

Research at Columbia University was supported primarily by the MRSEC Program of the National Science Foundation under award number DMR-0213574 and by the New York State Office of Science, Technology and Academic Research (NYSTAR), with additional support from US Department of Energy, Office of Basic Energy Sciences, through the Catalysis Science Program. Work at Case Western Reserve University was supported by NSF grant DMR-0349201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony F. Heinz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information (PDF 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Shan, J., Islam, M. et al. Exciton polarizability in semiconductor nanocrystals. Nature Mater 5, 861–864 (2006). https://doi.org/10.1038/nmat1739

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1739

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing