Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ambient pressure colossal magnetocaloric effect tuned by composition in Mn1−xFexAs

Abstract

The magnetocaloric effect (MCE) is the basis for magnetic refrigeration, and can replace conventional gas compression technology due to its superior efficiency and environment friendliness1,2,3. MCE materials must exhibit a large temperature variation in response to an adiabatic magnetic-field variation and a large isothermal entropic effect is also expected. In this respect, MnAs shows the colossal MCE, but the effect appears under high pressures4. In this work, we report on the properties of Mn1−xFexAs that exhibit the colossal effect at ambient pressure. The MCE peak varies from 285 K to 310 K depending on the Fe concentration. Although a large thermal hysteresis is observed, the colossal effect at ambient pressure brings layered magnetic regenerators with huge refrigerating power closer to practical applications around room temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The effect on magnetization from Fe substitution for Mn in MnAs.
Figure 2: The effect on transition temperature and hysteresis from Fe substitution for Mn in MnAs.
Figure 3: Behaviour of Mn1−xFexAs magnetization at low temperatures and around the Curie point.
Figure 4: The colossal effect for Mn1−xFexAs as a function of temperature and Fe content for a magnetic field variation of 5 T.

Similar content being viewed by others

References

  1. Tishin, A. M. & Spichkin, I. The Magnetocaloric Effect and its Applications (Institute of Physics Publishing, Bristol, 2003).

    Google Scholar 

  2. Gschneidner, K. A. Jr, Pecharsky, V. K. & Tsokol, A. O. Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479–1539 (2005).

    Article  Google Scholar 

  3. Brück, E. Developments in magnetocaloric refrigeration. J. Phys. D Appl. Phys. 38, R381–R391 (2005).

    Article  Google Scholar 

  4. Gama, S. et al. Pressure-induced colossal magnetocaloric effect in MnAs. Phys. Rev. Lett. 93, 237202 (2004).

    Article  Google Scholar 

  5. Pecharsky, V. K., Gschneidner, K. A. Jr, Pecharsky, A. O. & Tishin, A. M. Thermodynamics of the magnetocaloric effect. Phys. Rev. B 64, 144406 (2001).

    Article  Google Scholar 

  6. Pecharsky, V. K. & Gschneidner, K. A. Jr. Giant Magnetocaloric Effect in Gd5(Si2Ge1−x)4 . Phys. Rev. Lett. 78, 4494–4497 (1997).

    Article  Google Scholar 

  7. Tegus, O., Brück, E., Buschow, K. H. J. & de Boer, F. R. Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 415, 150–152 (2002).

    Article  Google Scholar 

  8. Fujita, A., Fujieda, S., Hasegawa, Y. & Fukamichi, K. Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(Fe1−xSix)13 compounds and their hydrides. Phys. Rev. B 67, 104416–104418 (2003).

    Article  Google Scholar 

  9. Wada, H. & Tanabe, Y. Giant magnetocaloric effect of MnAs1−xSbx . Appl. Phys. Lett. 79, 3302–3304 (2001).

    Article  Google Scholar 

  10. Wada, H., Taniguchi, K. & Tanabe, Y. Extremely large magnetic entropy change of MnAs1−xSbx near room temperature. Mater. Trans. 43, 73–77 (2002).

    Article  Google Scholar 

  11. Pecharsky, V. K., Holm, A. P., Gschneidner, K. A. Jr & Rink, R. Massive magnetic-field-induced structural transformation in Gd5Ge4 and the nature of the first order transition. Phys. Rev. Lett. 91, 197204 (2003).

    Article  Google Scholar 

  12. Morellon, L. et al. Pressure enhancement of the giant magnetocaloric effect in Tb5Si2Ge2 . Phys. Rev. Lett. 93, 137201 (2004).

    Article  Google Scholar 

  13. von Ranke, P. J. et al. Theoretical description of the colossal entropic magnetocaloric effect: Application to MnAs. Phys. Rev. B 73, 014415 (2006).

    Article  Google Scholar 

  14. von Ranke, P. J., de Oliveira, N. A., Mello, C., Carvalho, A. M. G. & Gama, S. Analytical model to understand the colossal magnetocaloric effect. Phys. Rev. B 71, 054410 (2004).

    Article  Google Scholar 

  15. Richard, M. A., Rowe, A. M. & Chahine, R. Magnetic refrigeration: Single and multimaterial active magnetic regenerators experiments. J. Appl. Phys. 95, 2146–2150 (2004).

    Article  Google Scholar 

  16. Carvalho, A. M. G. et al. The magnetic and magnetocaloric properties of Gd5Ge2Si2 compound under hydrostatic pressure. J. Appl. Phys. 97, 10M320 (2005).

    Article  Google Scholar 

  17. Rocco, D. L. et al. Magnetocaloric effect of La0.8Sr0.2MnO3 compound under pressure. J. Appl. Phys. 97, 10M317 (2005).

    Article  Google Scholar 

  18. Fujita, A. & Fukamichi, K. Proc. First IIR Int. Conf. On Magnetic Refrigeration at Room Temperature (Montreux, Switzerland, 27–30 Sept. 2005) 201–209 (International Institute of Refrigeration, Paris, 2005).

    Google Scholar 

  19. Massalski, T. B. (ed.) in Binary Alloy Phase Diagrams 2nd edn (ASM International, Materials Park, 1990).

  20. Menyuk, N., Kafalas, J. A., Dwight, K. & Goodenough, J. B. Effects of pressure on the magnetic properties of MnAs. Phys. Rev. 177, 942–951 (1969).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from Fapesp—Fundação de Amparo à Pesquisa do Estado de S. Paulo, CNPq—Conselho Nacional de Desenvolvimento Científico e Tecnológico and from Capes—Coordenação de Aperfeiçoamento do Pessoal de Nível Superior.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Gama.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Campos, A., Rocco, D., Carvalho, A. et al. Ambient pressure colossal magnetocaloric effect tuned by composition in Mn1−xFexAs. Nature Mater 5, 802–804 (2006). https://doi.org/10.1038/nmat1732

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1732

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing