Crystal structure transformations in SiO2 from classical and ab initio metadynamics

Abstract

Silica is the main component of the Earth's crust and is also of great relevance in many branches of materials science and technology. Its phase diagram is rather intricate and exhibits many different crystalline phases1,2,3,4,5,6. The reported propensity to amorphization and the strong influence on the outcome of the initial structure and of the pressurization protocol1,7 indicate the presence of metastability and large kinetic barriers. As a consequence, theory is also faced with great difficulties and our understanding of the complex transformation mechanisms is still very sketchy despite a large number of simulations8,9,10,11,12,13. Here, we introduce a substantial improvement of the metadynamics method14,15, which finally brings simulations in close agreement with experiments. We unveil the subtle and non-intuitive stepwise mechanism of the pressure-induced transformation of fourfold-coordinated α-quartz into sixfold-coordinated stishovite at room temperature. We also predict that on compression fourfold-coordinated coesite will transform into the post-stishovite α-PbO2-type phase. The new method is far more efficient than previous methods, and for the first time the study of complex structural phase transitions with many intermediates is within the reach of molecular dynamics simulations. This insight will help in designing new experimental protocols capable of steering the system towards the desired transition.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Evolution of the enthalpy in the simulation starting from quartz II.
Figure 2: Transition from the 3×2 structure to stishovite.
Figure 3: Evolution of the enthalpy during the transition from coesite to the α-PbO2 phase.
Figure 4: Transition from coesite to the α-PbO2 phase.

References

  1. 1

    Hemley, R. J., Prewitt, C. T. & Kingma, K. J. Silica–Physical Behaviour, Geochemistry, and Materials Applications 41 (Rev. Mineral. Vol. 29, MSA, Washington DC, 1994).

  2. 2

    Tsuchida, Y. & Yagi, T. New pressure-induced transformations of silica at room temperature. Nature 347, 267–269 (1990).

  3. 3

    Kingma, K. J., Hemley, R. J., Mao, H. K. & Veblen, D. R. New high-pressure transformation in α-quartz. Phys. Rev. Lett. 70, 3927–3930 (1993).

  4. 4

    Dubrovinsky, L. S. et al. Experimental and theoretical identification of a new high-pressure phase of silica. Nature 388, 362–365 (1997).

  5. 5

    Haines, J., Léger, J. M., Gorelli, F. & Hanfland, M. Crystalline post-quartz phase in silica at high pressure. Phys. Rev. Lett. 87, 155503 (2001).

  6. 6

    Kuwayama, Y., Hirose, K., Sata, N. & Ohishi, Y. The pyrite-type high-pressure form of silica. Science 309, 923–925 (2005).

  7. 7

    Hemley, R. J., Jephcoat, A. P., Mao, H. K., Ming, L. C. & Manghnani, M. H. Pressure-induced amorphization of crystalline silica. Nature 334, 52–54 (1988).

  8. 8

    Tsuneyuki, S., Matsui, Y., Aoki, H. & Tsukada, M. New pressure-induced structural transformations in silica obtained by computer simulation. Nature 339, 209–211 (1989).

  9. 9

    Binggeli, N., Chelikowsky, J. R. & Wentzcovitch, R. M. Simulating the amorphization of α-quartz under pressure. Phys. Rev. B 49, 9336–9340 (1994).

  10. 10

    Somayazulu, M. S., Sharma, S. M. & Sikka, S. K. Structure of a new high pressure phase in α-quartz determined by molecular dynamics studies. Phys. Rev. Lett. 73, 98–101 (1994).

  11. 11

    Dean, D. W., Wentzcovitch, R. M., Keskar, N., Chelikowsky, J. R. & Binggeli, N. Pressure-induced amorphization in crystalline silica: Soft phonon modes and shear instabilities in coesite. Phys. Rev. B 61, 3303–3309 (2000).

  12. 12

    Klug, D. D. et al. Ab initio molecular dynamics study of the pressure-induced phase transformations in cristobalite. Phys. Rev. B 63, 104106 (2001).

  13. 13

    Campañá, C., Müser, M. H., Tse, J. S., Herzbach, D. & Schöffel, P. Irreversibility of the pressure-induced phase transition of quartz and the relation between three hypothetical post-quartz phases. Phys. Rev. B 70, 224101 (2004).

  14. 14

    Martoňák, R., Laio, A. & Parrinello, M. Predicting crystal structures: The Parrinello-Rahman method revisited. Phys. Rev. Lett. 90, 075503 (2003).

  15. 15

    Laio, A. & Parrinello, M. Escaping free-energy minima. Proc. Natl Acad. Sci. USA 99, 12562–12566 (2002).

  16. 16

    Demuth, T., Jeanvoine, Y., Hafner, J. & Ángyán, J. G. Polymorphism in silica studied in the local density and generalized-gradient approximations. J. Phys. Condens. Matter 11, 3833–3874 (1999).

  17. 17

    Teter, D. M., Hemley, R. J., Kresse, G. & Hafner, J. High pressure polymorphism in silica. Phys. Rev. Lett. 80, 2145–2148 (1998).

  18. 18

    Oganov, A. R., Gillan, M. J. & Price, G. D. Structural stability of silica at high pressures and temperatures. Phys. Rev. B 71, 064104 (2005).

  19. 19

    Parrinello, M. & Rahman, A. Crystal structure and pair potentials: A molecular-dynamics study. Phys. Rev. Lett. 45, 1196–1199 (1980).

  20. 20

    Martoňák, R. et al. Simulation of structural phase transitions by metadynamics. Z. Kristallogr. 220, 489–498 (2005).

  21. 21

    Ceriani, C. et al. Molecular dynamics simulation of reconstructive phase transitions on an anhydrous zeolite. Phys. Rev. B 70, 113403 (2004).

  22. 22

    Oganov, A. R., Martoňák, R., Laio, A., Raiteri, P. & Parrinello, M. Anisotropy of Earth's D′′ layer and stacking faults in the MgSiO3 post-perovskite phase. Nature 438, 1142–1144 (2005).

  23. 23

    Raiteri, P., Martoňák, R. & Parrinello, M. Exploring polymorphism: the case of benzene. Angew. Chem. Int. Edn 44, 3769–3773 (2005).

  24. 24

    van Beest, B. W. H., Kramer, G. J. & van Santen, R. A. Force fields for silicas and aluminophosphates based on ab initio calculations. Phys. Rev. Lett. 64, 1955–1958 (1990).

  25. 25

    Saika-Voivod, I., Sciortino, F., Grande, T. & Poole, P. H. Phase diagram of silica from computer simulation. Phys. Rev. E 70, 061507 (2004).

  26. 26

    Choudhury, N. & Chaplot, S. L. Ab initio studies of phonon softening and high-pressure phase transitions of α-quartz SiO2 . Phys. Rev. B 73, 094304 (2006).

  27. 27

    Sowa, H. & Koch, E. Group-theoretical and geometrical considerations of the phase transition between the high-temperature polymorphs of quartz and tridymite. Acta Crystallogr. A 58, 327–333 (2002).

  28. 28

    Hantsch, U. et al. Theoretical investigation of moganite. Eur. J. Mineral. 17, 21–30 (2005).

  29. 29

    Car, R. & Parrinello, M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985).

  30. 30

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

  31. 31

    Gonze, X. et al. First-principles computation of material properties: the ABINIT software project. Comput. Mater. Sci. 25, 478–492 (2002).

Download references

Acknowledgements

We would like to acknowledge stimulating discussions with M. Bernasconi as well as help from P. Raiteri and M. Valle.

Author information

Correspondence to Roman Martoňák.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary tables I, II and III (PDF 48 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martoňák, R., Donadio, D., Oganov, A. et al. Crystal structure transformations in SiO2 from classical and ab initio metadynamics. Nature Mater 5, 623–626 (2006). https://doi.org/10.1038/nmat1696

Download citation

Further reading