Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fast and slow dynamics of the cytoskeleton

Abstract

Material moduli of the cytoskeleton (CSK) influence a wide range of cell functions1,2,3. There is substantial evidence from reconstituted F-actin gels that a regime exists in which the moduli scale with frequency with a universal exponent of 3/4. Such behaviour is entropic in origin and is attributable to fluctuations in semiflexible polymers driven by thermal forces4,5,6,7, but it is not obvious a priori that such entropic effects are responsible for the elasticity of the CSK. Here we demonstrate the existence of such a regime in the living cell, but only at high frequencies. Fast events scaled with frequency in a manner comparable to semiflexible-polymer dynamics, but slow events scaled with a non-universal exponent that was systematically smaller than 3/4 and probably more consistent with a soft-glass regime8,9. These findings strongly suggest that at smaller timescales elasticity arises from entropic fluctuations of a semiflexible-filament network, whereas on longer timescales slow (soft-glass-like) dynamics of a different origin prevail. The transition between these two regimes occurred on timescales of the order of 0.01 s, thus setting within the slow glassy regime cellular events such as spreading, crawling, contracting, and invading.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Freshly isolated bovine trachea smooth muscle cells, with bound beads, and the twisting cytometry method.
Figure 2: Storage modulus (G′) and loss modulus (G′′) as a function of frequency for all beads measured (N=64).
Figure 3: Pooled data of G′ (red, filled circles) and G′′ (blue, open circles) from all individual beads, together with the average two-term power-law fit (solid lines).
Figure 4: Distributions of the two exponents, α and β, that characterize the two distinct regimes of CSK dynamics.

Similar content being viewed by others

References

  1. Chicurel, M. E., Chen, C. S. & Ingber, D. E. Cellular control lies in the balance of forces. Curr. Opin. Cell. Biol. 10, 232–239 (1998).

    Article  Google Scholar 

  2. Discher, D. E., Janmey, P. & Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    Article  Google Scholar 

  3. Janmey, P. A. & Weitz, D. A. Dealing with mechanics: mechanisms of force transduction in cells. Trends Biochem. Sci. 29, 364–370 (2004).

    Article  Google Scholar 

  4. Gittes, F., Schnurr, B., Olmsted, P. D., MacKintosh, F. C. & Schmidt, C. F. Microscopic viscoelasticity: Shear moduli of soft materials determined from thermal fluctuations. Phys. Rev. Lett. 79, 3286–3289 (1997).

    Article  Google Scholar 

  5. Morse, D. C. Viscoelasticity of concentrated isotropic solutions of semiflexible polymers. 2. Linear response. Macromolecules 31, 7044–7067 (1998).

    Article  Google Scholar 

  6. Gardel, M. L., Valentine, M. T., Crocker, J. C., Bausch, A. R. & Weitz, D. A. Microrheology of entangled F-actin solutions. Phys. Rev. Lett. 91, 158302 (2003).

    Article  Google Scholar 

  7. Gardel, M. L. et al. Elastic behavior of cross-linked and bundled actin networks. Science 304, 1301–1305 (2004).

    Article  Google Scholar 

  8. Fabry, B. et al. Scaling the microrheology of living cells. Phys. Rev. Lett. 87, 148102 (2001).

    Article  Google Scholar 

  9. Bursac, P. et al. Cytoskeletal remodelling and slow dynamics in the living cell. Nature Mater. 4, 557–561 (2005).

    Article  Google Scholar 

  10. Kas, J., Strey, H. & Sackmann, E. Direct imaging of reptation for semiflexible actin filaments. Nature 368, 226–229 (1994).

    Article  Google Scholar 

  11. MacKintosh, F. C., Kas, J. & Janmey, P. A. Elasticity of semiflexible biopolymer networks. Phys. Rev. Lett. 75, 4425–4428 (1995).

    Article  Google Scholar 

  12. Gittes, F. & MacKintosh, F. C. Dynamic shear modulus of a semiflexible polymer network. Phys. Rev. E 58, R1241–R1244 (1998).

    Article  Google Scholar 

  13. Gisler, T. & Weitz, D. A. Scaling of the microrheology of semidilute F-actin solutions. Phys. Rev. Lett. 82, 1606–1609 (1999).

    Article  Google Scholar 

  14. Gardel, M. L. et al. Scaling of F-actin network rheology to probe single filament elasticity and dynamics. Phys. Rev. Lett. 93, 188102 (2004).

    Article  Google Scholar 

  15. Morse, D. C. Viscoelasticity of tightly entangled solutions of semiflexible polymers. Phys. Rev. E 58, R1237–R1240 (1998).

    Article  Google Scholar 

  16. Morse, D. C. Viscoelasticity of concentrated isotropic solutions of semiflexible polymers. 1. Model and stress tensor. Macromolecules 31, 7030–7043 (1998).

    Article  Google Scholar 

  17. Stamenovic, D., Suki, B., Fabry, B., Wang, N. & Fredberg, J. J. Rheology of airway smooth muscle cells is associated with cytoskeletal contractile stress. J. Appl. Physiol. 96, 1600–1605 (2004).

    Article  Google Scholar 

  18. Alcaraz, J. et al. Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys. J. 84, 2071–2079 (2003).

    Article  Google Scholar 

  19. Desprat, N., Richert, A., Simeon, J. & Asnacios, A. Creep function of a single living cell. Biophys. J. 88, 2224–2233 (2005).

    Article  Google Scholar 

  20. Gardel, M. L. et al. Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells. Proc. Natl Acad. Sci. USA 103, 1762–1767 (2006).

    Article  Google Scholar 

  21. Draeger, A., Stelzer, E., Herzog, M. & Small, J. Unique geometry of actin-membrane anchorage sites in avian gizzard smooth muscle cells. J. Cell Sci. 94, 703–711 (1989).

    Google Scholar 

  22. Bagby, R. M., Young, A. M., Dotson, R. S., Fisher, B. A. & McKinnon, K. Contraction of single smooth muscle cells from Bufo marinus stomach. Nature 234, 351–352 (1971).

    Article  Google Scholar 

  23. DeFeo, T. T. & Morgan, K. G. Responses of enzymatically isolated mammalian vascular smooth muscle cells to pharmacological and electrical stimuli. Pflugers Arch. 404, 100–102 (1985).

    Article  Google Scholar 

  24. Fabry, B. et al. Time scale and other invariants of integrative mechanical behavior in living cells. Phys. Rev. E 68, 041914 (2003).

    Article  Google Scholar 

  25. Sollich, P., Lequeux, F., Hebraud, P. & Cates, M. E. Rheology of soft glassy materials. Phys. Rev. Lett. 78, 2020–2023 (1997).

    Article  Google Scholar 

  26. Cates, M. E. & Sollich, P. in Foams and Emulsions (eds Sadoc, J. F. & Rivier, N.) 207–236 (Kluwer Academic, Dordrecht, 1999).

    Book  Google Scholar 

  27. Mason, T. G., Gisler, T., Kroy, K., Frey, E. & Weitz, D. A. Rheology of F-actin solutions determined from thermally driven tracer motion. J. Rheol. 44, 917–928 (2000).

    Article  Google Scholar 

  28. Gopal, A. D. & Durian, D. J. Relaxing in foam. Phys. Rev. Lett. 91, 188303 (2003).

    Article  Google Scholar 

  29. Puig-de-Morales, M. et al. Cytoskeletal mechanics in adherent human airway smooth muscle cells: probe specificity and scaling of protein-protein dynamics. Am. J. Physiol. Cell Physiol. 287, C643–C654 (2004).

    Article  Google Scholar 

  30. Wang, N. et al. Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am. J. Physiol. Cell Physiol. 282, C606–C616 (2002).

    Article  Google Scholar 

  31. Bulatov, V. V. & Argon, A. S. A stochastic-model for continuum elastoplastic behavior. 2. A study of the glass-transition and structural relaxation. Modelling Simul. Mater. Sci. Eng. 2, 185–202 (1994).

    Article  Google Scholar 

  32. Weeks, E. R., Crocker, J. C., Levitt, A. C., Schofield, A. & Weitz, D. A. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287, 627–631 (2000).

    Article  Google Scholar 

  33. Mazurin, O. V. Theory of glass-transition—chemical-equilibria approach. J. Non-Cryst. Solids 129, 259–265 (1991).

    Article  Google Scholar 

  34. Kovacs, A. J., Aklonis, J. J., Hutchinson, J. M. & Ramos, A. R. Isobaric volume and enthalpy recovery of glasses. 2. Transparent multi-parameter theory. J. Polym. Sci. Polym. Phys. 17, 1097–1162 (1979).

    Article  Google Scholar 

  35. Chen, H. S. & Turnbull, D. Evidence of a glass–liquid transition in a gold–germanium–silicon alloy. J. Chem. Phys. 48, 2560–2571 (1968).

    Article  Google Scholar 

  36. Sollich, P. Rheological constitutive equation for a model of soft glassy materials. Phys. Rev. E 58, 738–759 (1998).

    Article  Google Scholar 

  37. Wang, N., Butler, J. P. & Ingber, D. E. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260, 1124–1127 (1993).

    Article  Google Scholar 

  38. Deng, L., Fairbank, N. J., Fabry, B., Smith, P. G. & Maksym, G. N. Localized mechanical stress induces time-dependent actin cytoskeletal remodeling and stiffening in cultured airway smooth muscle cells. Am. J. Physiol. Cell Physiol. 287, C440–C448 (2004).

    Article  Google Scholar 

  39. Choquet, D., Felsenfeld, D. P. & Sheetz, M. P. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88, 39–48 (1997).

    Article  Google Scholar 

  40. Mijailovich, S. M., Kojic, M., Zivkovic, M., Fabry, B. & Fredberg, J. J. A finite element model of cell deformation during magnetic bead twisting. J. Appl. Physiol. 93, 1429–1436 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank C. Gallant for her assistance in the adaptation of the cell isolation method. X.T. is supported by a postdoctoral fellowship from the Spanish Ministerio de Educación y Ciencia. This study was financially supported by NIH HL65960, HL33009 and HL31704.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linhong Deng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1 and S2 (PDF 289 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, L., Trepat, X., Butler, J. et al. Fast and slow dynamics of the cytoskeleton. Nature Mater 5, 636–640 (2006). https://doi.org/10.1038/nmat1685

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1685

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing