Monocrystalline spinel nanotube fabrication based on the Kirkendall effect


There is a deep interest in methods to fabricate hollow nanocrystals for potential application as high-efficiency catalysts or drug-delivery agents. Tubular one-dimensional nanocrystals have been prepared for a wide variety of materials, including semiconductors1,2, metals3,4, ferroelectrics5,6 and magnetite7. They can be produced by rolling up layered materials or via an axial growth in a rolled-up form8,9,10, coating pores in templates11 or by eliminating the core of a core-shell nanowire1,7. The Kirkendall effect, a classical phenomenon in metallurgy12, was recently applied to explain the formation of hollow spherical nanocrystals13,14,15,16,17. Although the experimental demonstration and theoretical treatment mainly concern binary compounds and planar interfaces or nanoscale spherical interfaces, the fabrication route provided by the Kirkendall effect should be generic, and should also work for high-aspect-ratio hollow cylinders (that is, nanotubes) or even more complex superstructures. In this letter, we report, for the first time, on ultra-long single-crystal ZnAl2O4 spinel nanotubes (total diameter: 40 nm, wall thickness: 10 nm) fabricated through a spinel-forming interfacial solid-state reaction of core-shell ZnO–Al2O3 nanowires involving the Kirkendall effect. Our results simultaneously represent an extension of applying the Kirkendall effect in fabricating hollow nano-objects from zero-dimensional to multidimensional, and from binary to ternary systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic diagram of the formation process of ZnAl2O4 spinel nanotubes.
Figure 2: Transformation of core-shell nanowires to nanotubes by means of the Kirkendall effect.
Figure 3: Microstructure and composition of the ZnAl2O4 spinel nanotubes.
Figure 4: Branched tubular spinel nanocrystals.


  1. 1

    Goldberger, J. et al. Single-crystal gallium nitride nanotubes. Nature 422, 599-602 (2003).

    Article  Google Scholar 

  2. 2

    Tenne, R. Advances in the synthesis of inorganic nanotubes and fullerene-like nanoparticles. Angew. Chem. Int. Edn 42, 5124-5132 (2003).

    Article  Google Scholar 

  3. 3

    Kijima, T. et al. Noble-metal nanotubes (Pt, Pd, Ag) from lyotropic mixed-surfactant liquid-crystal templates. Angew. Chem. Int. Edn 43, 228-232 (2004).

    Article  Google Scholar 

  4. 4

    Lee, W., Scholz, R., Nielsch, K. & Gösele, U. A template-based electrochemical method for multi-segmented metallic nanotubes. Angew. Chem. Int. Edn 117, 6050-6054 (2005).

    Article  Google Scholar 

  5. 5

    Morrison, F. D., Ramsay, L. & Scott, J. F. High-aspect-ratio piezoelectric strontium-bismuth-tantalate nanotubes. J. Phys.: Condens. Matter 15, L527-L532 (2003).

    Google Scholar 

  6. 6

    Mao, Y., Banerjee, S. & Wong, S. S. Hydrothermal synthesis of perovskite nanotubes. Chem. Commun. 408-409 (2003).

  7. 7

    Liu, Z. et al. Single crystalline magnetite nanotubes. J. Am. Chem. Soc. 127, 6-7 (2005).

    Article  Google Scholar 

  8. 8

    Schmidt, O. G. & Eberl, K. Thin solid films roll up into nanotubes. Nature 410, 168 (2001).

    Article  Google Scholar 

  9. 9

    Yin, Z. et al. Microemusion-based synthesis of titanium phosphate nanotubes via amine extraction system. J. Am. Chem. Soc. 126, 8882-8883 (2004).

    Article  Google Scholar 

  10. 10

    Krivovichev, S. V. et al. Nanoscale tubules in uranyl selenates. Angew. Chem. Int. Edn 44, 1134-1136 (2004).

    Article  Google Scholar 

  11. 11

    Steinhart, M. et al. Polymer nanotubes by wetting of ordered porous templates. Science 296, 1997 (2002).

    Article  Google Scholar 

  12. 12

    Smigelskas, A. D. & Kirkendall, E. O. Zinc diffusion in alpha brass. Trans. AIME 171, 130-142 (1947).

    Google Scholar 

  13. 13

    Yin, Y. et al. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304, 711-714 (2004).

    Article  Google Scholar 

  14. 14

    Wang, Y. L., Cai, L. & Xia, Y. N. Monodisperse spherical colloids of Pb and their use as chemical templates to produce hollow particles. Adv. Mater. 17, 473-477 (2005).

    Article  Google Scholar 

  15. 15

    Tu, K. N. & Gösele, U. Hollow nanostructures based on the Kirkendall effect: design and stability considerations. Appl. Phys. Lett. 86, 093111 (2005).

    Article  Google Scholar 

  16. 16

    Belova, I. V. & Murch, G..E. Analysis of the formation of hollow nanocrystals: theory and Monte Carlo simulations. J. Phase Equilib. Diffus. 26, 430-434 (2005).

    Article  Google Scholar 

  17. 17

    Zhou, S., Varughese, B., Eichhorn, B., Jackson, G. & McIlwrath, K. Pt-Cu core-shell and alloy nanoparticles for heterogeneous NOx reduction: anomalous stability and reactivity of a core-shell nanostructure. Angew. Chem. Int. Edn 117, 4615-4619 (2005).

    Article  Google Scholar 

  18. 18

    Schmalzried, H. in Defects and Transport in Oxide (eds Seltzer, M. S. & Jaffee, R. I.) 83 (Plemun, New York, 1974).

    Google Scholar 

  19. 19

    Bengtson, B. & Jagitsch, R. Kinetic studies on formation of spinel from zinc oxide and alumina. Arkiv Kemi Mineral. Geol. A 24, 1-16 (1947).

    Google Scholar 

  20. 20

    George, S. M., Ott, A. W. & Klaus, J. W. Surface chemistry for atomic layer growth. J. Phys. Chem. 100, 13121-13131 (1996).

    Article  Google Scholar 

  21. 21

    Niinistö, L., Päiväsaari, J., Niinistö, J., Putkonen, M. & Nieminen, M. Advanced electronic and optoelectronic materials by atomic layer deposition: an overview with special emphasis on recent progress in processing of high-k dielectrics and other oxide materials. Phys. Status Solidi A 202, 1443-1452 (2004).

    Article  Google Scholar 

  22. 22

    Lim, B. S., Rahtu, A. & Gordon, R. G. Atomic layer deposition of transition metals. Nature Mater. 2, 749-754 (2003).

    Article  Google Scholar 

  23. 23

    Gorla, C. R., Mayo, W. E., Liang, S. & Lu, Y. Structure and interface-controlled growth kinetics of ZnAl2O4 formed at the (11-20) ZnO/(01-12) Al2O3 interface. J. Appl. Phys. 87, 3736-3743 (2000).

    Article  Google Scholar 

  24. 24

    Li, Q. & Penner, R. M. Photoconductive cadmium sulfide hemicylindrical shell nanowire ensembles. Nano Lett. 5, 1720-1725 (2005).

    Article  Google Scholar 

  25. 25

    Navias, L. Preparation and properties of spinel made by vapor transport and diffusion in the system MgOAl2O3 . J. Am. Ceram. Soc. 44, 434-446 (1961).

    Article  Google Scholar 

  26. 26

    Hu, J., Bando, Y. & Liu, Z. Synthesis of gallium-filled gallium oxide-zinc oxide composite coaxial nanotubes. Adv. Mater. 15, 1000-1003 (2003).

    Article  Google Scholar 

  27. 27

    Fan, H. J. et al. Arrays of vertically aligned and hexagonally arranged ZnO nanowires: A new template-directed approach. Nanotechnology 16, 913-917 (2005).

    Article  Google Scholar 

  28. 28

    Fan, H. J. et al. Well-ordered ZnO nanowire arrays on GaN substrate fabricated via nanosphere lithography. J. Cryst. Growth 287, 34-38 (2006).

    Article  Google Scholar 

  29. 29

    Fan, H. J., Werner, P. & Zacharias, M. Semiconductor nanowires: from self organization to patterned growth. Small 2, 700-717 (2006).

    Article  Google Scholar 

Download references


M.K, U.G. and K.N acknowledge financial support from the German Federal Ministry of Education and Research (BMBF, FKZ 03N8701).

Author information



Corresponding author

Correspondence to Hong Jin fan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2 and S3 (PDF 1343 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jin fan, H., Knez, M., Scholz, R. et al. Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nature Mater 5, 627–631 (2006).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing