Abstract
Excitons are quasi-particles that form when Coulomb-interacting electrons and holes in semiconductors are bound into pair states. They have many features analogous to those of atomic hydrogen. Because of this, researchers are interested in exploring excitonic phenomena, from optical, quantum-optical and thermodynamic transitions to the possible condensation of excitons into a quantum-degenerate state. Excitonic signatures commonly appear in the optical absorption and emission of direct-gap semiconductor systems. However, the precise properties of incoherent exciton populations in such systems are difficult to determine and are the subject of intense debate. We review recent contributions to this discussion, and argue that to obtain detailed information about exciton populations, conventional experimental techniques should be supplemented by direct quasi-particle spectroscopy using the relatively newly available terahertz light sources. Finally, we propose a scheme of quantum-optical excitation to generate quantum-degenerate exciton states directly.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Haug, H. & Koch, S. W. Quantum Theory of the Optical and Electronic Properties of Semiconductors 4th edn (World Scientific, Singapore, 2004).
Klingshirn, C. Semiconductor Optics 2nd edn (Springer, Berlin, 2005).
Schäfer, W. & Wegener, M. Semiconductor Optics and Transport Phenomena (Springer, Berlin, 2002).
Zimmermann, R. Many-Particle Theory of Highly Excited Semiconductors (Teubner, Leipzig, 1987).
Frenkel, J. On the transformation of light into heat in solids. II. Phys. Rev. 37, 1276–1294 (1931).
Wannier, G. H. The structure of electronic excitation levels in insulating crystals. Phys. Rev. 52, 191–197 (1937).
Elliott, R. J. in Polarons and Excitons (eds Kuper, C. G. & Whitefield, G. D.) 269–293 (Oliver and Boyd, Edinburgh, 1963).
Knox, R. S. in Solid State Phys. Suppl. 5 (eds Seitz, F. & Turnbull, D.) (Academic, New York, 1963).
Dexter, D. I. & Knox, R. S. Excitons (Wiley, New York, 1981).
Lampert, M. A. Mobile and immobile effective-mass-particle complexes in nonmetallic solids. Phys. Rev. Lett. 1, 450–453 (1958).
Moskalenko, S. A. The theory of Mott exciton in alkali-halide crystals. Opt. Spektrosk. 5, 147–155 (1958).
Klingshirn, C. & Haug, H. Optical properties of highly excited direct gap semiconductors. Phys. Rep. 70, 315–410 (1981).
Rashba, E. L. & Sturge, M. D. Excitons (North-Holland, Amsterdam, 1982).
Hönerlage, B., Levy, R., Grun, J. B., Klingshirn, C. & Bohnert, K. The dispersion of excitons, polaritons, and biexcitons in direct-gap semiconductors. Phys. Rep. 124, 161–253 (1985).
Blatt, J. M., Boer, K. W. & Brandt, W. Bose–Einstein condensation of excitons. Phys. Rev. 126, 1691–1692 (1962).
Moskalenko, S. A. Reversible optico-hydrodynamic phenomena in a nonideal exciton gas. Sov. Phys. Solid State 4, 199–204 (1962).
Keldysh, L. V. & Kozlov, A. N. Collective properties of excitons in semiconductors. Sov. Phys. JETP-USSR 27, 521 (1968).
Ivanov, C. I., Barentzen, H. & Girardeau, M. D. On the theory of dense exciton systems. Physica A 140, 612–628 (1987).
Kira, M. et al. Quantum theory of nonlinear semiconductor microcavity luminescence explaining ‘boser’ experiments. Phys. Rev. Lett. 79, 5170–5173 (1997).
Combescot, M. & Betbeder-Matibet, O. Scattering rates and lifetime of exact and boson excitons. Phys. Rev. Lett. 93, 016403 (2004).
Kira, M., Jahnke, F. & Koch, S. W. Microscopic theory of excitonic signatures in semiconductor photoluminescence. Phys. Rev. Lett. 81, 3263–3266 (1998).
Khitrova, G., Gibbs, H. M., Jahnke, F., Kira, M. & Koch, S. W. Nonlinear optics of normal-mode-coupling semiconductor microcavities. Rev. Mod. Phys. 71, 1591–1639 (1999).
Kira, M., Hoyer, W., Stroucken, T. & Koch, S. W. Exciton formation in semiconductors and the influence of a photonic environment. Phys. Rev. Lett. 87, 176401 (2001).
Koch, S. W., Meier, T., Hoyer, W. & Kira, M. Theory of the optical properties of semiconductor nanostructures. Physica E 14, 45–52 (2002).
Kira, M. & Koch, S. W. Exciton-population inversion and terahertz gain in semiconductors excited to resonance. Phys. Rev. Lett. 93, 076402 (2004).
Lindberg, M. & Koch, S. W. Effective Bloch equations for semiconductors. Phys. Rev. B 38, 3342–3350 (1988).
Schmitt-Rink, S., Chemla, D. S. & Haug, H. Nonequilibrium theory of the optical Stark effect and spectral hole burning in semiconductors. Phys. Rev. B 37, 941–955 (1988).
Lysenko, V. G. & Revenko, V. I. Exciton spectrum in case of high-density non-equilibrium carriers in CdS crystals. Fiz. Tverd. Tela 20, 2144–2147 (1978).
Gibbs, H. M. et al. Saturation of the free exciton resonance in GaAs. Solid State Commun. 30, 271–275 (1979).
Fehrenbach, G. W., Schäfer, W., Treusch, J. & Ulbrich, R. G. Transient optical spectra of a dense exciton gas in a direct-gap semiconductor. Phys. Rev. Lett. 57, 1281–1284 (1982).
Lee, Y. H. et al. Room-temperature optical nonlinearities in GaAs. Phys. Rev. Lett. 57, 2446–2449 (1986).
Schmitt-Rink, S., Chemla, D. S. & Miller, D. A. B. Linear and nonlinear optical properties of semiconductor quantum wells. Adv. Phys. 38, 89–188 (1989).
Rappen, T., Mohs, G. & Wegener, M. Polariton dynamics in quantum wells studied by femtosecond four-wave mixing. Phys. Rev. B 47, 9658–9662 (1993).
Pekar, S. I. On the theory of additional electromagnetic waves in crystals in the exciton absorption region. Sov. Phys. Solid State 4, 953–960 (1962).
Chemla, D. S., Bigot, J.-Y., Mycek, M.-A. & Weiss, S. Ultrafast phase dynamics of coherent emission from excitons in GaAs quantum wells. Phys. Rev. B 50, 8439–8453 (1994).
Schultheis, L., Sturge, M. D. & Hegarty, J. Photon-echoes from two-dimensional excitons in GaAs-AlGaAs quantum wells. Appl. Phys. Lett. 47, 995–997 (1985).
Schultheis, L., Kuhl, J., Honold, A. & Tu, C. W. Ultrafast phase relaxation of excitons via exciton–exciton and exciton–electron collisions. Phys. Rev. Lett. 57, 1635–1638 (1986).
Schultheis, L., Kuhl, J., Honold, A. & Tu, C. W. Picosecond phase coherence and orientational relaxation of excitons in GaAs. Phys. Rev. Lett. 57, 1797–1800 (1986).
Stolz, H. Time Resolved Light Scattering from Excitons (Springer, Berlin, 1994).
Shah, J. Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer, Berlin, 1996).
Chemla, D. S. & Shah, J. Many-body and correlation effects in semiconductors. Nature 411, 549–557 (2001).
Smirl, A. L. in Ultrafast Phenomena in Semiconductors (ed. Tsen, K.-T.) 443–507 (Springer, New York, 2001).
Kuhl, J. et al. in Coherent Optical Interactions in Semiconductors (ed. Phillips, R. T.) 1–31 (Plenum, New York, 1994).
Stolz, H., Schwarze, D., von der Osten, W. & Weimann, G. Transient resonant Rayleigh scattering from electronic states in disordered systems: excitons in GaAs/AlxGa1−xAs multiple-quantum-well structures. Phys. Rev. B 47, 9669–9675 (1993).
Haacke, S., Tayler, R. A., Zimmermann, R., Bar-Joseph, I. & Deveaud, B. Resonant femtosecond emission from quantum well excitons: the role of Rayleigh scattering and luminescence. Phys. Rev. Lett. 78, 2228–2231 (1997).
Birkedahl, D. & Shah, J. Femtosecond spectral interferometry of resonant secondary emission from quantum wells: resonance Rayleigh scattering in the nonergodic regime. Phys. Rev. Lett. 81, 2372–2375 (1998).
Garro, N., Snelling, M. J., Kennedy, S. P., Phillips, R. T. & Ploog, K. H. Coherent effects in resonant quantum-well emission. Phys. Rev. B 60, 4497–4500 (1999).
Langbein, W., Hvam, J. M. & Zimmermann, R. Time resolved speckle analysis: a new approach of coherence and dephasing of optical excitations in solids. Phys. Rev. Lett. 82, 1040–1043 (1999).
Runge, E. Excitons in semiconductor nanostructures. Solid State Phys. 57, 149–305 (2002).
Thränhardt, A., Kuckenburg, S., Knorr, A., Meier, T. & Koch, S. W. Quantum theory of phonon-assisted exciton formation and luminescence in semiconductor quantum wells. Phys. Rev. B 62, 2706–2720 (2000).
Peyghambarian, N. et al. Blue shift of the exciton resonance due to exciton–exciton interactions in a multiple-quantum-well structure. Phys. Rev. Lett. 53, 2433–2436 (1984).
Meier, T. & Koch, S. W. Analysis of excitonic absorption changes induced by incoherent exciton and electron–hole pair populations. Phys. Status Solidi B 221, 211–214 (2000).
Kusano, J., Segawa, Y., Aoyagi, Y., Namba, S. & Okamoto, H. Extremely slow energy relaxation of a two-dimensional exciton in a GaAs superlattice structure. Phys. Rev. B 40, 1685–1691 (1989).
Damen, T. C. et al. Dynamics of exciton formation and relaxation in GaAs quantum wells. Phys. Rev. B 42, 7434–7438 (1990).
Blom, P. W. M., van Hall, P. J., Smit, C., Cuypers, J. P. & Wolter, J. H. Selective exciton formation in thin GaAs/AlxGa1−xAs quantum wells. Phys. Rev. Lett. 71, 3878–3881 (1993).
Kumar, R., Vengurlekar, A. S., Prabhu, S. S., Shah, J. & Pfeiffer, L. N. Picosecond time evolution of free electron–hole pairs into excitons in GaAs quantum wells. Phys. Rev. B 54, 4891–4897 (1996).
Nüsse, S., Haring Bolivar, P., Kurz, H., Klimov, V. & Levy, F. Carrier cooling and exciton formation in GaSe. Phys. Rev. B 56, 4578–4583 (1997).
Zhao, H. & Kalt, H. in Optics of Semiconductors and their Nanostructures (eds Kalt, H. & Hetterich, M.) 19–45 (Springer, Berlin, 2004).
Szczytko, J. et al. Determination of the exciton formation in quantum wells from time-resolved interband luminescence. Phys. Rev. Lett. 93, 137401 (2004).
Szczytko, J. et al. Origin of excitonic luminescence in quantum wells: direct comparison of the exciton population and Coulomb correlated plasma models. Phys. Rev. B. 71, 195313 (2005).
Hayes, G. R. & Deveaud, B. Is luminescence from quantum wells due to excitons? Phys. Status Solidi A 190, 637–640 (2002).
Selbmann, P. E., Gulia, M., Rossi, F., Molinari, E. & Lugli, P. H. Coupled free-carrier and exciton relaxation in optically excited semiconductors. Phys. Rev. B 54, 4660–4673 (1996).
Gulia, M., Rossi, F., Molinari, E., Selbmann, P. E. & Lugli, P. H. Phonon-assisted exciton formation and relaxation in GaAs/AlxGa1−xAs quantum wells. Phys. Rev. B 55, R16049–R16052 (1997).
Siantidis, K., Axt, V. M. & Kuhn, T. Dynamics of exciton formation for near band-gap excitations. Phys. Rev. B 65, 035303 (2001).
Hoyer, W., Kira, M. & Koch, S. W. Influence of Coulomb and phonon interaction on the exciton formation dynamics in semiconductor heterostructures. Phys. Rev. B 67, 155113 (2003).
Hoyer, W., Kira, M. & Koch, S. W. in Electron and Photon Confinement in Semiconductor Nanostructures: Proceedings of the International School of Physics “Enrico Fermi”, Course CL (eds Deveaud, B., Quattropani, A. & Schwendimann, P.) 15–62 (IOS Press, Amsterdam, 2003).
Chatterjee, S. et al. Excitonic photoluminescence in semiconductor quantum wells: plasma versus excitons. Phys. Rev. Lett. 92, 067402 (2004).
Hoyer, W. et al. Many-body dynamics and exciton formation studied by time-resolved photoluminescence. Phys. Rev. B 72, 075324 (2005).
Hoyer, W., Kira, M. & Koch, S. W. Influence of bound and unbound electron-hole-pair populations on the excitonic luminescence in semiconductor quantum wells. Preprint at <http://arxiv.org/abs/cond-mat/0604349> (2006).
Gershenzon, E. M., Goltsman, G. N. & Ptitsina, M. G. Investigation of free excitons in Ge and their condensation at submillimeter waves. Zh. Eksp. Teor. Fiz. 70, 224–234 (1976).
Timusk, T., Navarro, R., Lipari, N. O. & Altarelli, M. Far-infrared absorption by excitons in silicon. Solid State Commun. 25, 217–219 (1978).
Groeneveld, R. M. & Grischkowsky, D. Picosecond time-resolved far-infrared experiments on carriers and excitons in GaAs-AlGaAs multiple-quantum wells. J. Opt. Soc. Am. B 11, 2502–2507 (1994).
Cerne, J. et al. Terahertz dynamics of excitons in GaAs/AlGaAs quantum wells. Phys. Rev. Lett. 77, 1131–1134 (1996).
Kubouchi, M., Yoshioka, K., Shimano, R., Mysyrowicz, A. & Kuwata-Gonokami, M. Study of orthoexciton-to-paraexciton conversion in Cu2O by excitonic Lyman spectroscopy. Phys. Rev. Lett. 94, 016403 (2005).
Jörger, M., Fleck, T., Klingshirn, C. & von Baltz, R. Midinfrared properties of cuprous oxide: high-order lattice vibrations and intraexcitonic transitions of the 1s paraexciton. Phys. Rev. B 71, 235219 (2005).
Kira, M., Hoyer, W. & Koch, S. W. Terahertz signatures of the exciton formation dynamics in non-resonantly excited semiconductors. Solid State Commun. 129, 733–736 (2004).
Kaindl, R. A., Carnahan, M. A., Hägele, D., Lövenich, R. & Chemla, D. S. Ultrafast terahertz probes of transient conducting and insulating phases in an electron–hole gas. Nature 423, 734–738 (2003).
Galbraith, I. et al. Excitonic signatures in the photoluminescence and terahertz absorption of a GaAs/AlxGa1−xAs multiple quantum well. Phys. Rev. B 71, 073302 (2005).
Hägele, D., Hübner, J., Rühle, W. W. & Oestreich, M. When do excitons really exist? Physica B 272, 328–330 (1999).
Oestreich, M., Hägele, D., Hübner, J. & Rühle, W. W. Excitons, or no excitons, that is the question. Phys. Status Solidi A 178, 27–32 (2000).
Huber, R. et al. How many-particle interactions develop after ultrafast excitation of an electron–hole plasma. Nature 414, 286–289 (2001).
Huber, R. et al. Femtosecond formation of coupled phonon-plasmon modes in InP: ultrabroadband THz experiment and quantum kinetic theory. Phys. Rev. Lett. 94, 027401 (2005).
Kira, M. & Koch, S. W. Quantum-optical spectroscopy of semiconductors. Phys. Rev. A 73, 013813 (2006).
Koch, S. W. & Kira, M. Excitons in semiconductors. in Optics of Semiconductors and their Nanostructures (eds Kalt, H. & Hetterich, M.) 1–18 (Springer, Berlin, 2004).
Acknowledgements
The research in Marburg is partially supported by the Deutsche Forschungsgemeinschaft through the Quantum Optics in Semiconductors Research Group and the Optodynamics Centre at the Philipps-Universität Marburg. We thank W. Hoyer for valuable discussions and collaboration on the exciton-luminescence theory. The Tucson research is financed by NSF (AMOP), AFOSR and DURINT.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Koch, S., Kira, M., Khitrova, G. et al. Semiconductor excitons in new light. Nature Mater 5, 523–531 (2006). https://doi.org/10.1038/nmat1658
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/nmat1658
This article is cited by
-
Interface engineering of charge-transfer excitons in 2D lateral heterostructures
Nature Communications (2023)
-
High harmonic generation in condensed matter
Nature Photonics (2022)
-
Unravelling the intertwined atomic and bulk nature of localised excitons by attosecond spectroscopy
Nature Communications (2021)
-
Transient circular dichroism and exciton spin dynamics in all-inorganic halide perovskites
Nature Communications (2020)
-
How lasing happens in CsPbBr3 perovskite nanowires
Nature Communications (2019)