Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Xenon as a probe for minority sites on solid surfaces

Abstract

Atomic-level microscopies have proved useful to map solid-surface sites directly, but, because of their lack of chemical specificity, they are less adept at identifying unique chemical activity on those sites. Here we present a dual-titration approach developed to probe minority sites on solid surfaces with unique chemical properties of potential relevance to heterogeneous catalysis. Our methodology involves the initial dosing of a chemical probe such as carbon monoxide or ammonia to drive its selective adsorption onto specific sites with particular chemical activity, and the subsequent adsorption of xenon to help identify the nature of those sites. A combination of photoelectron and temperature-programmed desorption spectroscopies are used to characterize the Xe adsorption. The chemistry of oxygen-modified Ni(110) single crystals was probed to test this technique. It was observed that whereas CO does not discriminate among the various sites present on those surfaces, ammonia binds preferentially to the end of –Ni–O rows and modifies their local electrostatic potential. In addition, it was determined that adsorbed CO aids in a reversible surface reconstruction involving the coalescence of fragmented surface –Ni–O rows at high (>350 K) temperatures.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PAX data from oxygen-treated Ni(110) single-crystal surfaces.
Figure 2: Xe TPD from oxygen-treated Ni(110) single-crystal surfaces.
Figure 3: Xe TPD from double-titration experiments on oxygen-treated Ni(110) single-crystal surfaces.
Figure 4: Xe TPD from double-titration experiments with CO as a function of annealing temperature.

Similar content being viewed by others

References

  1. Fendler, J. H. (ed.) Nanoparticles and Nanostructured Films (Wiley-VCH, Weinheim, 1998).

  2. Somorjai, G. A. In situ surface science studies of catalytic reactions. Cattech 3, 84–97 (1999).

    Google Scholar 

  3. Wintterlin, J. Scanning tunneling microscopy studies of catalytic reactions. Adv. Catal. 45, 131–206 (2000).

    Google Scholar 

  4. Woodruff, D. P. Solved and unsolved problems in surface structure determination. Surf. Sci. 500, 147–171 (2002).

    Article  Google Scholar 

  5. Thomas, J. M & Thomas, W. J. Introduction to the Principles of Heterogeneous Catalysis (Academic, London, 1967).

    Book  Google Scholar 

  6. Lercher, J. A. in Catalysis: An Integrated Approach 2nd edn (ed. van Santen, R. A.) 543–566 (Studies in Surface Science and Catalysis Series, Vol. 123, Elsevier, Amsterdam, 1999).

    Google Scholar 

  7. Knozinger, H. & Huber, S. IR spectroscopy of small and weakly interacting molecular probes for acidic and basic zeolites. J. Chem. Soc. Faraday Trans. 94, 2047–2059 (1998).

    Article  Google Scholar 

  8. Busca, G. Spectroscopic characterization of the acid properties of metal oxide catalysts. Catal. Today 41, 191–206 (1998).

    Article  Google Scholar 

  9. Hadjiivanov, K. I. & Vayssilov, G. N. Characterization of oxide surfaces and zeolites by carbon monoxide as an IR probe molecule. Adv. Catal. 47, 307–511 (2002).

    Google Scholar 

  10. Guo, H., Chrysostomou, D., Flowers, J. & Zaera, F. Effect of coadsorbed oxygen on the chemistry of ammonia over Ni(110) single-crystal surfaces. J. Phys. Chem. B 107, 502–511 (2003).

    Article  Google Scholar 

  11. Guo, H. & Zaera, F. Thermal chemistry of iodomethane on Ni(110): 2. Effect of coadsorbed oxygen. J. Phys. Chem. B 108, 16226–16232 (2004).

    Article  Google Scholar 

  12. Kueppers, J., Wandelt, K. & Ertl, G. Influence of the local surface structure on the 5p photoemission of adsorbed xenon. Phys. Rev. Lett. 43, 928–931 (1979).

    Article  Google Scholar 

  13. Wandelt, K. in Chemistry and Physics of Solid Surfaces VIII (eds Vanselow, R. & Howe, R.) 289–334 (Springer Series in Surface Sciences, Vol. 22, Springer, Berlin, 1990).

    Book  Google Scholar 

  14. Jablonski, A. & Wandelt, K. Quantitative aspects of ultraviolet photoemission of adsorbed xenon–-a review. Surf. Interface Anal. 17, 611–627 (1991).

    Article  Google Scholar 

  15. Wandelt, K. The local work function–-concept and implications. Appl. Surf. Sci. 111, 1–10 (1997).

    Article  Google Scholar 

  16. Miranda, R., Daiser, S., Wandelt, K. & Ertl, G. Thermodynamics of xenon adsorption on palladium(s)[8(100) × (110)]: from steps to multilayers. Surf. Sci. 131, 61–91 (1983).

    Article  Google Scholar 

  17. Wandelt, K. & Hulse, J. E. Xenon adsorption on palladium. I. The homogeneous (110), (100), and (111) surfaces. J. Chem. Phys. 80, 1340–1352 (1984).

    Article  Google Scholar 

  18. Kim, K. S., Sinfelt, J. H., Eder, S., Markert, K. & Wandelt, K. Photoemission studies of physisorbed xenon atoms on ruthenium/copper surfaces. J. Phys. Chem. 91, 2337–2342 (1987).

    Article  Google Scholar 

  19. Wandelt, K., Niemantsverdriet, J. W., Dolle, P. & Markert, K. Thermal stability of atomic silver/gold and gold/silver interfaces on a ruthenium(001) substrate. Surf. Sci. 213, 612–629 (1989).

    Article  Google Scholar 

  20. Hermann, K., Gumhalter, B. & Wandelt, K. Perturbation of the adsorbate electronic structure by local fields at surface defects. Surf. Sci. 251–252, 1128–1132 (1991).

    Article  Google Scholar 

  21. Guevremont, J. M., Strongin, D. R. & Schoonen, M. A. A. Effects of surface imperfections on the binding of CH3OH and H2O on FeS2(100) : using adsorbed Xe as a probe of mineral surface structure. Surf. Sci. 391, 109–124 (1997).

    Article  Google Scholar 

  22. Hulse, J. E., Wandelt, K., Kueppers, J. & Ertl, G. Xenon adsorption on an oxygen pretreated palladium (110) surface. LeVide, les Couches Minces 201, 108–111 (1980).

    Google Scholar 

  23. Daiser, S. & Wandelt, K. The short-ranging catalytic activity of surface defects: two forms of adsorbed oxygen on a stepped platinum(111) surface at 100 K. Surf. Sci. 128, L213–L218 (1983).

    Article  Google Scholar 

  24. Yates, J. T. Jr & Erickson, N. E. X-ray photoelectron spectroscopic study of the physical adsorption of xenon and the chemisorption of oxygen on tungsten (111). Surf. Sci. 44, 489–514 (1974).

    Article  Google Scholar 

  25. Wang, C. & Gomer, R. Adsorption and coadsorption with oxygen of xenon on the (110) and (100) planes of tungsten. Surf. Sci. 91, 533–550 (1980).

    Article  Google Scholar 

  26. Fargues, D. & Ehrhardt, J. J. Adsorption of xenon on oxidized nickel(100) and nickel(111) surfaces by LEED and photoemission. Surf. Sci. 209, 401–422 (1989).

    Article  Google Scholar 

  27. Dresser, M. J., Madey, T. E. & Yates, J. T. Jr. Adsorption of xenon by tungsten (111) and its interaction with preadsorbed oxygen. Surf. Sci. 42, 533–551 (1974).

    Article  Google Scholar 

  28. Milun, M., Pervan, P. & Wandelt, K. Interaction of oxygen with polycrystalline palladium. Surf. Sci. 189–190, 466–471 (1987).

    Article  Google Scholar 

  29. Pai, W. W. & Reutt-Robey, J. E. Formation of (n×1)-O/Ag(110) overlayers and the role of step-edge atoms. Phys. Rev. B 53, 15997–16005 (1996).

    Article  Google Scholar 

  30. Kiskinova, M. Surface structure and reactivity: reactions on face-centered cubic (110) metal surfaces involving adatom-induced reconstructions. Chem. Rev. 96, 1431–1448 (1996).

    Article  Google Scholar 

  31. Guo, X.-C. & Madix, R. J. Imaging surface reactions at atomic resolution: A wealth of behavior on the nanoscale. J. Phys. Chem. B 107, 3105–3116 (2003).

    Article  Google Scholar 

  32. Norton, P. R., Bindner, P. E. & Jackman, T. E. Oxygen on nickel(110): Surface phases and related absolute coverages. Surf. Sci. 175, 313–324 (1986).

    Article  Google Scholar 

  33. Brundle, C. R. in The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis (eds King, D. A. & Woodruff, D. P.) 132–388 (Elsevier, Amsterdam, 1990).

    Google Scholar 

  34. Eierdal, L., Besenbacher, F., Laegsgaard, E. & Stensgaards, I. Interaction of oxygen with Ni(110) studied by scanning tunneling microscopy. Surf. Sci. 312, 31–53 (1994).

    Article  Google Scholar 

  35. Benndorf, C. & Madey, T. E. Adsorption of water on clean and oxygen-predosed nickel(110). Surf. Sci. 194, 63–91 (1988).

    Article  Google Scholar 

  36. Callen, B. W., Griffiths, K., Norton, P. R. & Harrington, D. A. Autocatalytic decomposition of water on nickel (110). J. Phys. Chem. 96, 10905–10913 (1992).

    Article  Google Scholar 

  37. Guo, H. & Zaera, F. Reactivity of hydroxyl species from coadsorption of oxygen and water on Ni(110) single-crystal surfaces. Catal. Lett. 88, 95–104 (2003).

    Article  Google Scholar 

  38. Ruan, L., Stensgaard, I., Laegsgaard, E. & Besenbacher, F. Decomposition of ammonia on an oxygen-precovered Ni(110) surface studied by scanning tunneling microscopy. Surf. Sci. 314, L873–L878 (1994).

    Article  Google Scholar 

  39. Öfner, H. & Zaera, F. Surface defect characterization in oxygen-dosed nickel surfaces and in NiO thin films by CO adsorption-desorption experiments. J. Phys. Chem. B 101, 9069–9076 (1997).

    Article  Google Scholar 

  40. Nakagoe, O., Watanabe, K., Takagi, N. & Matsumoto, Y. Role of structural fluctuation in a surface reaction studied by scanning tunneling microscopy: The CO+O→CO2 clean-off reaction on Ag(110)-(2×1)-O . Phys. Rev. Lett. 90, 226105/226101–226105/226104 (2003).

    Article  Google Scholar 

  41. Madey, T. E. & Benndorf, C. Influence of surface additives (sodium and oxygen) on the adsorption and structure of ammonia on nickel(110). Surf. Sci. 152–153, 587–595 (1985).

    Article  Google Scholar 

  42. Chrysostomou, D., Flowers, J. & Zaera, F. The thermal chemistry of ammonia on Ni(110). Surf. Sci. 439, 34–48 (1999).

    Article  Google Scholar 

  43. Guo, H. & Zaera, F. Thermal chemistry of iodomethane on Ni(110): 1. Clean and hydrogen-predosed surfaces. J. Phys. Chem. B 108, 16220–16225 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by the US National Science Foundation and by the American Chemical Society Petroleum Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Zaera.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, H., Zaera, F. Xenon as a probe for minority sites on solid surfaces. Nature Mater 5, 489–493 (2006). https://doi.org/10.1038/nmat1654

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1654

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing