Abstract
The search for uncompensated magnetic moments on antiferromagnetic surfaces is of great technological importance as they are responsible for the exchange-bias effect that is widely used in state-of-the-art magnetic storage devices. We have studied the atomic spin structure of phase domain walls in the antiferromagnetic Fe monolayer on W(001) by means of spin-polarized scanning tunnelling microscopy and Monte Carlo simulations. The domain wall width only amounts to 6–8 atomic rows. Although walls oriented along 〈100〉 directions are found to be fully compensated, detailed analysis of 〈110〉-oriented walls reveals an uncompensated perpendicular magnetic moment. Our result represents a major advance in the field of antiferromagnetism, and may lead to a better understanding of the magnetic interaction between ferromagnetic and antiferromagnetic materials.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Discovery and characterization of a new type of domain wall in a row-wise antiferromagnet
Nature Communications Open Access 09 June 2021
-
Seeing is believing: visualization of antiferromagnetic domains
npj Quantum Materials Open Access 17 January 2020
-
Tuning the Néel temperature in an antiferromagnet: the case of NixCo1−xO microstructures
Scientific Reports Open Access 19 September 2019
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Meiklejohn, W. H. & Bean, C. P. New magnetic anisotropy. Phys. Rev. 102, 1413–1414 (1956).
Meiklejohn, W. H. & Bean, C. P. New magnetic anisotropy. Phys. Rev. 105, 904–913 (1957).
Kiwi, M. Exchange bias theory. J. Magn. Magn. Mater. 234, 584–595 (2001).
Ohldag, H. et al. Correlation between exchange bias and pinned interfacial spins. Phys. Rev. Lett. 91, 017203 (2003).
Koon, N. C. Calculations of exchange bias in thin films with ferromagnetic/antiferromagnetic interfaces. Phys. Rev. Lett. 78, 4865–4868 (1997).
Schulthess, T. C. & Butler, W. H. Consequences of spin-flop coupling in exchange biased films. Phys. Rev. Lett. 81, 4516–4519 (1998).
Takano, K., Kodama, R. H., Berkowitz, A. E., Cao, W. & Thomas, G. Interfacial uncompensated antiferromagnetic spins: Role in unidirectional anisotropy in polycrystalline Ni18Fe19/CoO bilayers. Phys. Rev. Lett. 79, 1130–1133 (1997).
Takano, K., Kodama, R. H., Berkowitz, A. E., Cao, W. & Thomas, G. Role of interfacial antiferromagnetic spins in unidirectional anisotropy in Ni18Fe19/CoO bilayers. J. Appl. Phys. 83, 6888–6892 (1998).
Malozemoff, A. P. Random-field model of exchange anisotropy at rough ferromagnetic-antiferromagnetic interfaces. Phys. Rev. B 35, 3679–3682 (1987).
Nowak, U. et al. Domain state model for exchange bias: I. Theory. Phys. Rev. B 66, 014430 (2002).
Keller, J. et al. Domain state model for exchange bias: II. Experiment. Phys. Rev. B 66, 014431 (2002).
Scholl, A. et al. Observation of antiferromagnetic domains in epitaxial thin films. Science 287, 1014–1016 (2000).
Nolting, F. et al. Direct observation of the alignment of ferromagnetic spins by antiferromagnetic spins. Nature 405, 767–769 (2000).
Hillebrecht, F. U. et al. Magnetic moments at the surface of antiferromagnetic NiO(100). Phys. Rev. Lett. 86, 3419–3422 (2001).
Weber, N. B., Ohldag, H., Gomonaj, H. & Hillebrecht, F. U. Magnetostrictive domain walls in antiferromagnetic NiO. Phys. Rev. Lett. 91, 237205 (2003).
Pratzer, M. et al. Atomic-scale magnetic domain walls in quasi-one-dimensional Fe nanostripes. Phys. Rev. Lett. 87, 127201 (2001).
Heinze, S. et al. Real-space imaging of two-dimensional antiferromagnetism on the atomic scale. Science 288, 1805–1808 (2000).
Kubetzka, A. et al. Revealing antiferromagnetic order of the Fe monolayer on W(001): Spin-polarized scanning tunneling microscopy and first-principles calculations. Phys. Rev. Lett. 94, 087204 (2005).
Yang, H., Smith, A. R., Prikhodko, M. & Lambrecht, W. R. L. Atomic-scale spin-polarized scanning tunneling microscopy applied to Mn3N2(010) . Phys. Rev. Lett. 89, 226101 (2002).
Wortmann, D., Heinze, S., Kurz, P., Bihlmayer, G. & Blügel, S. Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001).
Bode, M. Spin-polarized scanning tunneling microscopy. Rep. Progr. Phys. 66, 523–582 (2003).
Vedmedenko, E. Y., Grimm, U. & Wiesendanger, R. Noncollinear magnetic order in quasicrystals. Phys. Rev. Lett. 93, 076407 (2004).
<http://www.flapw.de>.
Chen, C. J. Introduction to Scanning Tunneling Microscopy (Oxford Univ. Press, Oxford, 1993).
Pietzsch, O., Kubetzka, A., Haude, D., Bode, M. & Wiesendanger, R. A low-temperature ultrahigh vacuum scanning tunneling microscope with a split-coil magnet and a rotary motion stepper motor for high spatial resolution studies of surface magnetisma. Rev. Sci. Instrum. 71, 424–430 (2000).
Acknowledgements
We thank C. M. Schneider (FZ Jülich) and U. Nowak (University of York, UK) for helpful discussions. Financial support from the DFG (SFB 668 and Graduate School ‘Design and characterization of functional materials’), from the EU project ASPRINT, from the Stifterverband für die Deutsche Wissenschaft, and from the Interdisciplinary Nanoscience Center Hamburg is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary movie 1 (MPG 9168 kb)
Supplementary Information
Supplementary movie legend (PDF 23 kb)
Rights and permissions
About this article
Cite this article
Bode, M., Vedmedenko, E., von Bergmann, K. et al. Atomic spin structure of antiferromagnetic domain walls. Nature Mater 5, 477–481 (2006). https://doi.org/10.1038/nmat1646
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat1646
This article is cited by
-
Lorentz electron ptychography for imaging magnetic textures beyond the diffraction limit
Nature Nanotechnology (2022)
-
Nanoscale mechanics of antiferromagnetic domain walls
Nature Physics (2021)
-
Discovery and characterization of a new type of domain wall in a row-wise antiferromagnet
Nature Communications (2021)
-
Seeing is believing: visualization of antiferromagnetic domains
npj Quantum Materials (2020)
-
Tuning the Néel temperature in an antiferromagnet: the case of NixCo1−xO microstructures
Scientific Reports (2019)