Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3


The great variability in the electrical properties of multinary oxide materials, ranging from insulating, through semiconducting to metallic behaviour, has given rise to the idea of modulating the electronic properties on a nanometre scale for high-density electronic memory devices. A particularly promising aspect seems to be the ability of perovskites to provide bistable switching of the conductance between non-metallic and metallic behaviour by the application of an appropriate electric field. Here we demonstrate that the switching behaviour is an intrinsic feature of naturally occurring dislocations in single crystals of a prototypical ternary oxide, SrTiO3. The phenomenon is shown to originate from local modulations of the oxygen content and to be related to the self-doping capability of the early transition metal oxides. Our results show that extended defects, such as dislocations, can act as bistable nanowires and hold technological promise for terabit memory devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Insulator-to-metal transition and resistance switching in undoped SrTiO3 single crystals.
Figure 2: Filamentary structure induced by electroformation.
Figure 3: Electroformation and metallic conductance of individual dislocations.
Figure 4: Resistance switching of a single dislocation.
Figure 5: Extended OSrO defect in SrTiO3 calculated in a 5×4 supercell.
Figure 6: A schematic illustration and simulation of resistance switching in single-crystalline material.


  1. 1

    Waser, R. (ed.) Nanoelectronics and Information Technology (Wiley-VCH, Weinheim, 2003).

  2. 2

    Brewer, J. E., Zhirnov, V. V. & Hutchby, J. A. IEEE Circuits Devices Mag. (March/April), 13–20 (2005).

  3. 3

    International Technology Roadmap for Semiconductors (2005); <http://public.itrs.net/Reports.htm>.

  4. 4

    Pinnow, C.-U. & Mikolajick, T. Material aspects in emerging non-volatile memories. J. Electrochem. Soc. 151, K13–K19 (2004).

    Article  Google Scholar 

  5. 5

    Dearnaley, G., Stoneham, A. M. & Morgan, D. V. Electrical phenomena in amorphous oxide films. Rep. Prog. Phys. 33, 1129–1191 (1970).

    Article  Google Scholar 

  6. 6

    Pagnia, H. & Sotnik, N. Bistable switching in electro-formed metal-insulator-metal devices. Phys. Status Solidi A 108, 11–65 (1988).

    Article  Google Scholar 

  7. 7

    Greer, A. L. & Mathur, N. Changing face of the chameleon. Nature 437, 1246–1247 (2005).

    Article  Google Scholar 

  8. 8

    Watanabe, Y. et al. Current-driven insulator-conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals. Appl. Phys. Lett. 78, 3738–3740 (2001).

    Article  Google Scholar 

  9. 9

    Beck, A., Bednorz, J. G., Gerber, Ch., Rossel, C. & Widmer, D. Reproducible switching effect in thin oxide films for memory applications. Appl. Phys. Lett. 77, 139–141 (2000).

    Article  Google Scholar 

  10. 10

    Rodríguez Contreras, J. et al. Resistive switching in metal–ferroelectric–metal junctions. Appl. Phys. Lett. 83, 4595–4597 (2003).

    Article  Google Scholar 

  11. 11

    Levy, P. et al. Nonvolatile magnetoresistive memory in phase separated La0.325Pr0.300Ca0.375MnO3 . Phys. Rev. B 65, R140401 (2002).

    Article  Google Scholar 

  12. 12

    Asamitsu, A., Tomioka, Y., Kuwahara, H. & Tokura, Y. Current switching of resisitive states in magnetoresistive manganites. Nature 388, 50–52 (1997).

    Article  Google Scholar 

  13. 13

    Liu, S. Q., Wu, N. J. & Ignatiev, A. Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett. 76, 2749–2751 (2000).

    Article  Google Scholar 

  14. 14

    Gu, R. Y., Wang, Z. D. & Ting, C. S. Theory of electric-field-induced metal-insulator transition in doped manganites. Phys. Rev. B 67, 153101 (2003).

    Article  Google Scholar 

  15. 15

    Sawa, A., Fujii, T., Kawasaki, M. & Tokura, Y. Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface. Appl. Phys. 85, 4073–4075 (2004).

    Google Scholar 

  16. 16

    Rossel, C., Meijer, G. I., Brémaud, D. & Widmer, D. Electrical current distribution across a metal-insulator-metal structure during bistable switching. J. Appl. Phys. 90, 2892–2898 (2001).

    Article  Google Scholar 

  17. 17

    Tsui, S. et al. Field-induced resistive switching in metal-oxide interfaces. Appl. Phys. Lett. 85, 317–319 (2004).

    Article  Google Scholar 

  18. 18

    Rozenberg, M. J., Inoue, I. H. & Sánchez, M. J. Nonvolatile memory with multilevel switching: A basic model. Phys. Rev. Lett. 92, 178302 (2004).

    Article  Google Scholar 

  19. 19

    Jia, C. L., Thust, A. & Urban, K. Atomic-scale analysis of the oxygen configuration at a SrTiO3 dislocation core. Phys. Rev. Lett. 95, 225506 (2005).

    Article  Google Scholar 

  20. 20

    Nakamury, A., Matsunaga, K., Tohma, J., Yamamoto, T. & Ikuhara, Y. Conducting nanowires in insulating ceramics. Nature Mater. 2, 453–456 (2003).

    Article  Google Scholar 

  21. 21

    Szot, K., Speier, W., Carius, R., Zastrow, U. & Beyer, W. Localized metallic conductivity and self-healing during thermal reduction of SrTiO3 . Phys. Rev. Lett. 88, 75508 (2002).

    Article  Google Scholar 

  22. 22

    Szot, K., Speier, W. & Eberhardt, W. Microscopic nature of the metal to insulator phase transition induced through electro-reduction in single-crystal KNbO3 . Appl. Phys. Lett. 60, 1190–1192 (1992).

    Article  Google Scholar 

  23. 23

    Wang, R., Zhu, Y. & Shapiro, S. M. Structural defects and the origin of the second length scale in SrTiO3 . Phys. Rev. Lett. 80, 2370–2373 (1998).

    Article  Google Scholar 

  24. 24

    Meijer, G. I. et al. Valence states of Cr and the insulator-to-metal transition in Cr-doped SrTiO3 . Phys. Rev. B 72, 155102 (2005).

    Article  Google Scholar 

  25. 25

    Yamada, H. & Miller, G. R. Point-defects in reduced strontium-titanate. J. Solid State Chem. 6, 169–177 (1973).

    Article  Google Scholar 

  26. 26

    Takayasu, H. Simulation of electrical breakdown and resulting variant of percolation fractals. Phys. Rev. Lett. 54, 1099–1101 (1985).

    Article  Google Scholar 

  27. 27

    Benguigui, L. Simulation of dielectric failure by means of resistor-diode random lattices. Phys. Rev. B 38, 7211–7214 (1988).

    Article  Google Scholar 

  28. 28

    Rakhshani, A. E., Hogarth, C. A. & Abidi, A. A. Observations of local defects caused by eletrical conduction through thin sandwich structures of Ag–SiO/BaO–Ag. J. Non-Cryst. Solids 20, 25–42 (1976).

    Article  Google Scholar 

  29. 29

    Ray, A. K. & Hogarth, C. A. Recent advances in the polyfilamentary model for electronic conduction in electro-formed insulating films. Int. J. Electron. 69, 97–107 (1990).

    Article  Google Scholar 

  30. 30

    Dearnaley, G., Morgan, D. V. & Stoneham, A. M. A model for filament growth and switching in amorphous oxide films. J. Non-Cryst. Solids 4, 593–612 (1970).

    Article  Google Scholar 

  31. 31

    Gravano, S., Amr, E., Gould, R. D. & Abu Samra, M. Monte Carlo simulation of current-voltage characteristics in metal-insulator-metal thin film structures. Thin Solid Films 433, 321–325 (2003).

    Article  Google Scholar 

  32. 32

    Beaulieu, R. P., Sulway, D. V. & Cox, C. D. The detection of current filaments in VO2 thin-film switches using the scanning electron microscope. Solid-State Electron. 16, 428–429 (1973).

    Article  Google Scholar 

  33. 33

    Henrich, V. E., Dresselhaus, G. & Zeiger, H. J. Surface defects and the electronic structure of SrTiO3 surfaces. Phys. Rev. B 17, 4908–4921 (1978).

    Article  Google Scholar 

  34. 34

    Bursill, La., Peng, J. & Fan, X. Structure and reactivity of atomic surfaces of barium-titanate under electron-irradiation. Ferroelectrics 97, 71–84 (1989).

    Article  Google Scholar 

  35. 35

    Luo, E. Z. et al. Identifying conducting phase from the insulating matrix in percolating metal-insulator nanocomposites by conducting atomic force microscopy. Appl. Phys. A 66, 1171–1174 (1998).

    Article  Google Scholar 

  36. 36

    Narayan, J., Weeks, R. A. & Sonder, E. Aggregation of defects and thermal-electric breakdown in MgO. J. Appl. Phys. 49, 5977–5981 (1978).

    Article  Google Scholar 

  37. 37

    Peter, F. et al. Piezoresponse in the light of surface adsorbates: Relevance of defined surface conditions for perovskite materials. Appl. Phys. Lett. 85, 2896–2898 (2004).

    Article  Google Scholar 

  38. 38

    Jia, C.-L., Lentzen, M. & Urban, K. High-resolution transmission electron microscopy using negative spherical aberration. Microsc. Microanal. 10, 174–184 (2004).

    Article  Google Scholar 

  39. 39

    Kim, M. et al. Nonstoichiometry and the electrical activity of grain boundaries in SrTiO3 . Phys. Rev. Lett. 86, 4056–4059 (2001).

    Article  Google Scholar 

  40. 40

    Klie, R. F., Beleggia, M., Zhu, Y., Buban, J. P. & Browning, N. D. Atomic-scale model of the grain boundary potential in perovskite oxides. Phys. Rev. B 68, 214101 (2003).

    Article  Google Scholar 

  41. 41

    Fang, Z. & Terakura, K. Spin and orbital polarizations around oxygen vacancies on the (001) surfaces of SrTiO3 . Surf. Sci. 470, L75–L80 (2000).

    Article  Google Scholar 

  42. 42

    Shanthi, N. & Sarma, D. D. Electronic structure of electron doped SrTiO3: SrTiO3−δ and Sr1−xLaxTiO3 . Phys. Rev. B 57, 2153–2158 (1998).

    Article  Google Scholar 

  43. 43

    Baikalov, A. et al. Field-driven hysteretic and reversible resistive switch at the Ag–Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 83, 957–959 (2003).

    Article  Google Scholar 

  44. 44

    Fors, R., Khartsev, S. I. & Grishin, A. M. Giant resistance switching in metal-insulator-manganite junctions: Evidence for Mott transition. Phys. Rev. B 71, 045305 (2005).

    Article  Google Scholar 

  45. 45

    Shin, J. et al. Surface stability of epitaxial SrRuO3 films. Surf. Sci. 581, 118–132 (2005).

    Article  Google Scholar 

  46. 46

    Chen, X., Strozier, J., Wu, N. J. & Ignatiev, A. Direct resistance profile for an electrical pulse induced resistance change device. Appl. Phys. Lett. 87, 233506 (2005).

    Article  Google Scholar 

  47. 47

    Aird, A. & Salje, E. K. H. Sheet superconductivity in twin walls: experimental evidence of WO3−x . J. Phys. Condens. Matter 10, L377–L380 (1998).

    Article  Google Scholar 

  48. 48

    Choi, B. J. et al. Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J. Appl. Phys. 98, 033715 (2005).

    Article  Google Scholar 

  49. 49

    Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    Article  Google Scholar 

  50. 50

    Wimmer, E., Krakauer, H., Weinert, M. & Freeman, A. J. Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O2 molecule. Phys. Rev. B 24, 864–875 (1981).

    Article  Google Scholar 

  51. 51

    Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943–954 (1991).

    Article  Google Scholar 

Download references


We would like to thank R. Dittmann for providing the epitaxial thin films. We would like to thank R. Dittmann for providing the epitaxial thin films. We appreciate the valuable discussions with J. G. Bednorz and the stimulus received from S. Blügel. We also acknowledge the inspiring comments by E. K. H. Salje and the critical reading of the manuscript by A. Rüdiger.

Author information



Corresponding authors

Correspondence to Krzysztof Szot or Rainer Waser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Szot, K., Speier, W., Bihlmayer, G. et al. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nature Mater 5, 312–320 (2006). https://doi.org/10.1038/nmat1614

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing