Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Elastically relaxed free-standing strained-silicon nanomembranes


Strain plays a critical role in the properties of materials. In silicon and silicon–germanium, strain provides a mechanism for control of both carrier mobility and band offsets. In materials integration, strain is typically tuned through the use of dislocations and elemental composition. We demonstrate a versatile method to control strain by fabricating membranes in which the final strain state is controlled by elastic strain sharing, that is, without the formation of defects. We grow Si/SiGe layers on a substrate from which they can be released, forming nanomembranes. X-ray-diffraction measurements confirm a final strain predicted by elasticity theory. The effectiveness of elastic strain to alter electronic properties is demonstrated by low-temperature longitudinal Hall-effect measurements on a strained-silicon quantum well before and after release. Elastic strain sharing and film transfer offer an intriguing path towards complex, multiple-layer structures in which each layer’s properties are controlled elastically, without the introduction of undesirable defects.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical microscope images of silicon nanomembranes transferred onto several substrates.
Figure 2: Membrane formation.
Figure 3: XRD reciprocal-space maps of several Si/SiGe/Si membrane conditions.
Figure 4: Electron-transport measurements in band-structure-engineered elastically strained nanomembranes.


  1. Ieong, M., Doris, B., Kedzierski, J., Rim, K. & Yang, M. Silicon device scaling to the sub-10-nm regime. Science 306, 2057–2060 (2004).

    Article  Google Scholar 

  2. Rim, K., Hoyt, J. L. & Gibbons, J. F. Fabrication and analysis of deep submicron strained-Si N-MOSFET’s. IEEE Trans. Electron Devices 47, 1406–1415 (2000).

    Article  Google Scholar 

  3. Mooney, P. M. & Chu, J. O. Heteroepitaxy and high-speed microelectronics. Annu. Rev. Mater. Sci. 30, 335–362 (2000).

    Article  Google Scholar 

  4. Fitzgerald, E. A. et al. Relaxed GexSi1−x structures for III-V integration with Si and high mobility two-dimensional electron gases in Si. J. Vac. Sci. Technol. B 10, 1807–1819 (1992).

    Article  Google Scholar 

  5. Ismail, K. et al. Identification of a mobility-limiting scattering mechanism iin modulation-doped Si/SiGe heterostructures. Phys. Rev. Lett. 73, 3447–3450 (1994).

    Article  Google Scholar 

  6. Monroe, D., Xie, Y. H., Fitzgerald, E. A., Silverman, P. J. & Watson, G. P. Comparison of mobility-limiting mechanisms in high-mobility Si1−xGex heterostructures. J. Vac. Sci. Technol. B 11, 1731–1737 (1993).

    Article  Google Scholar 

  7. Lo, Y. H. New approach to grow pseudomorphic structures over the critical thickness. Appl. Phys. Lett. 59, 2311–2313 (1991).

    Article  Google Scholar 

  8. Brown, A. S. Compliant substrate technology: Status and prospects. J. Vac. Sci. Technol. B 16, 2308–2312 (1998).

    Article  Google Scholar 

  9. Hobart, K. D. et al. Compliant substrates: A comparative study of the relaxation mechanisms of strained films bonded to high and low viscosity oxides. J. Electron. Mater. 29, 897–900 (2000).

    Article  Google Scholar 

  10. Yin, H. et al. Buckling suppression of SiGe islands on compliant substrates. J. Appl. Phys. 94, 6875–6882 (2003).

    Article  Google Scholar 

  11. Ejeckam, F. E., Lo, Y. H., Subramanian, S., Hou, H. Q. & Hammons, B. E. Lattice engineered compliant substrate for defect-free heteroepitaxial growth. Appl. Phys. Lett. 70, 1685–1687 (1997).

    Article  Google Scholar 

  12. Mooney, P. M., Cohen, G. M., Chu, J. O. & Murray, C. E. Elastic strain relaxation in free-standing SiGe/Si structures. Appl. Phys. Lett. 84, 1093–1095 (2004).

    Article  Google Scholar 

  13. Jones, A. M. et al. Long-wavelength InGaAs quantum wells grown without strain-induced warping on InGaAs compliant membranes above a GaAs substrate. Appl. Phys. Lett. 74, 1000–1002 (1999).

    Article  Google Scholar 

  14. Cohen, G. M., Mooney, P. M., Paruchuri, V. K. & Hovel, H. J. Dislocation-free strained silicon-on-silicon by in-place bonding. Appl. Phys. Lett. 86, 251902 (2005).

    Article  Google Scholar 

  15. Damlencourt, J.-F. et al. Paramorphic growth: A new approach in mismatched heteroepitaxy to prepare fuly relaxed materials. Jpn J. Appl. Phys. 38, L996–L999 (1999).

    Article  Google Scholar 

  16. Boudaa, M. et al. Growth and characterization of totally relaxed InGaAs thick layers on strain-relaxed paramorphic InP substrates. J. Electron. Mater. 33, 833–839 (2004).

    Article  Google Scholar 

  17. Demeester, P., Pollentier, I., De Dobbelaere, P., Brys, C. & Van Daele, P. Epitaxial lift-off and its applications. Semicond. Sci. Technol. 8, 1124–1135 (1993).

    Article  Google Scholar 

  18. Menard, E., Lee, K. J., Khang, D.-Y., Nuzzo, R. G. & Rogers, J. A. A printable form of silicon for high performance thin film transistors plastic substrates. Appl. Phys. Lett. 84, 5398–5400 (2004).

    Article  Google Scholar 

  19. Yablonovitch, E., Hwang, D. M., Gmitter, T. J., Forez, L. T. & Harbison, J. P. Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates. Appl. Phys. Lett. 56, 2419–2421 (1990).

    Article  Google Scholar 

  20. Langdo, T. A. et al. SiGe-free strained Si on insulator by wafer bonding and layer transfer. Appl. Phys. Lett. 82, 4256–4258 (2003).

    Article  Google Scholar 

  21. Moriceau, H. et al. New layer transfers obtained by the SmartCut process. J. Electron. Mater. 32, 829–835 (2003).

    Article  Google Scholar 

  22. Freund, L. B. & Suresh, S. Thin Film Materials (Cambridge Univ. Press, Cambridge, 2003).

    Google Scholar 

  23. van Houten, H., Williamson, J. G., Broekaart, M. E. I., Foxon, C. T. & Harris, J. J. Magnetoresistance in a GaAs/AlxGa1−xAs heterostructure with double subband occupancy. Phys. Rev. B 37, 2756–2758 (1988).

    Article  Google Scholar 

  24. Beenakker, C. W. J. & van Houten, H. Quantum transport in semiconductor nanosturctures. Solid State Phys. 44, 1 (1991).

    Article  Google Scholar 

  25. Schäffler, F. High-mobility Si and Ge structures. Semicond. Sci. Technol. 12, 1515–1549 (1997).

    Article  Google Scholar 

Download references


This research was supported by DOE, NSF-MRSEC, AFOSR, NSF-ITR, ARDA, ARO and NSA.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mark A. Eriksson.

Ethics declarations

Competing interests

Three of the authors, M. M. Roberts, D. E. Savage and M. G. Lagally, are listed as inventors on U.S. Patent application #P04286US, "Fabrication of Silicon-Germanium Heterojunction Structures", filed December 16, 2004. G. Celler is employed by Soitec, a maker of silicon-on-insulator.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Roberts, M., Klein, L., Savage, D. et al. Elastically relaxed free-standing strained-silicon nanomembranes. Nature Mater 5, 388–393 (2006).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing