Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles

Abstract

Nanomaterials have become increasingly important in the development of new molecular probes for in vivo imaging1,2,3,4,5,6,7,8, both experimentally and clinically. Nanoparticulate imaging probes have included semiconductor quantum dots9,10,11,12, magnetic13 and magnetofluorescent nanoparticles14,15, gold nanoparticles and nanoshells16,17,18,19, among others. However, the use of nanomaterials for one of the most common imaging techniques, computed tomography (CT), has remained unexplored. Current CT contrast agents are based on small iodinated molecules. They are effective in absorbing X-rays, but non-specific distribution and rapid pharmacokinetics have rather limited their microvascular and targeting performance. Here we propose the use of a polymer-coated Bi2S3 nanoparticle preparation as an injectable CT imaging agent. This preparation demonstrates excellent stability at high concentrations (0.25 M Bi3+), high X-ray absorption (fivefold better than iodine), very long circulation times (>2 h) in vivo and an efficacy/safety profile comparable to or better than iodinated imaging agents. We show the utility of these polymer-coated Bi2S3 nanoparticles for enhanced in vivo imaging of the vasculature, the liver and lymph nodes in mice. These nanoparticles and their bioconjugates are expected to become an important adjunct to in vivo imaging of molecular targets and pathological conditions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BPNP characterization.
Figure 2: X-ray absorption of BPNPs.
Figure 3: Serial in vivo imaging of vasculature.
Figure 4: Lymph-node imaging.
Figure 5: Cellular toxicity study.

Similar content being viewed by others

References

  1. Weissleder, R. & Ntziachristos, V. Shedding light onto live molecular targets. Nature Med. 9, 123–128 (2003).

    Article  Google Scholar 

  2. Ntziachristos, V., Ripoll, J., Wang, L. V. & Weissleder, R. Looking and listening to light: the evolution of whole-body photonic imaging. Nature Biotechnol. 23, 313–320 (2005).

    Article  Google Scholar 

  3. Jaffer, F. A. & Weissleder, R. Molecular imaging in the clinical arena. Jama 293, 855–862 (2005).

    Article  Google Scholar 

  4. Ferrari, M. Cancer nanotechnology: opportunities and challenges. Nature Rev. Cancer 5, 161–171 (2005).

    Article  Google Scholar 

  5. Whitesides, G. M. The ‘right’ size in nanobiotechnology. Nature Biotechnol. 21, 1161–1165 (2003).

    Article  Google Scholar 

  6. Alivisatos, A. P., Gu, W. & Larabell, C. Quantum dots as cellular probes. Annu. Rev. Biomed. Eng. 7, 1–22 (2005).

    Article  Google Scholar 

  7. Medintz, I. L., Uyeda, H. T., Goldman, E. R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Mater. 4, 435–446 (2005).

    Article  Google Scholar 

  8. Rosi, N. L. & Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev. 105, 1547–1562 (2005).

    Article  Google Scholar 

  9. Bruchez, M. Jr, Moronne, M., Gin, P., Weiss, S. & Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998).

    Article  Google Scholar 

  10. Chan, W. C. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998).

    Article  Google Scholar 

  11. Dubertret, B. et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759–1762 (2002).

    Article  Google Scholar 

  12. Kim, S. et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nature Biotechnol. 22, 93–97 (2004).

    Article  Google Scholar 

  13. Shen, T., Weissleder, R., Papisov, M., Bogdanov, A. Jr & Brady, T. J. Monocrystalline iron oxide nanocompounds (MION): physicochemical properties. Magn. Reson. Med. 29, 599–604 (1993).

    Article  Google Scholar 

  14. Kircher, M. F., Mahmood, U., King, R. S., Weissleder, R. & Josephson, L. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res. 63, 8122–8125 (2003).

    Google Scholar 

  15. Santra, S., Yang, H., Holloway, P. H., Stanley, J. T. & Mericle, R. A. Synthesis of water-dispersible fluorescent, radio-opaque, and paramagnetic CdS:Mn/ZnS quantum dots: a multifunctional probe for bioimaging. J. Am. Chem. Soc. 127, 1656–1657 (2005).

    Article  Google Scholar 

  16. El-Sayed, I. H., Huang, X. & El-Sayed, M. A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 5, 829–834 (2005).

    Article  Google Scholar 

  17. Loo, C., Lowery, A., Halas, N., West, J. & Drezek, R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5, 709–711 (2005).

    Article  Google Scholar 

  18. Chen, J. et al. Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett. 5, 473–477 (2005).

    Article  Google Scholar 

  19. Hainfeld, J. F., Slatkin, D. N. & Smilowitz, H. M. The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol. 49, N309–N315 (2004).

    Article  Google Scholar 

  20. Bühler, V. Kollidon® Polyvinylpyrrolidone for the Pharmaceutical Industry 9–125 (BASF Fine Chemicals, Ludwigshafen, 1998).

    Google Scholar 

  21. Sun, Y. G. & Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002).

    Article  Google Scholar 

  22. Teranishi, T., Hosoe, M., Tanaka, T. & Miyake, M. Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition. J. Phys. Chem. B 103, 3818–3827 (1999).

    Article  Google Scholar 

  23. Schill, A. W. & El-Sayed, M. A. Wavelength-dependent hot electron relaxation in PVP capped CdS/HgS/CdS quantum dot quantum well nanocrystals. J. Phys. Chem. B 108, 13619–13625 (2004).

    Article  Google Scholar 

  24. Sun, Y. G., Mayers, B., Herricks, T. & Xia, Y. N. Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Lett. 3, 955–960 (2003).

    Article  Google Scholar 

  25. Variano, B. F. et al. Quantum effects in anisotropic semiconductor clusters - colloidal suspensions of Bi2S3 and Sb2S3 . J. Phys. Chem. 91, 6455–6458 (1987).

    Article  Google Scholar 

  26. Chen, Y., Kou, H. M., Jiang, J. & Su, Y. Morphologies of nanostructured bismuth sulfide prepared by different synthesis routes. Mater. Chem. Phys. 82, 1–4 (2003).

    Article  Google Scholar 

  27. Sigman, M. B. Jr & Korgel, B. A. Solventless synthesis of Bi2S3 (bismuthinite) nanorods, nanowires, and nanofabric. Chem. Mater. 17, 1655–1660 (2005).

    Article  Google Scholar 

  28. Briand, G. G. & Burford, N. Bismuth compounds and preparations with biological or medicinal relevance. Chem. Rev. 99, 2601–2657 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the following NIH grants: P50 CA86355, R24 CA92782, UO1 HL080731, U54 CA119349 and RO1-EB004626A01. This work made use of MRSEC Shared Facilities supported by the National Science Foundation under Award Number DMR-0213282 and NSF Laser Facility grant CHE-0111370.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Weissleder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1 and S2 (PDF 106 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabin, O., Manuel Perez, J., Grimm, J. et al. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nature Mater 5, 118–122 (2006). https://doi.org/10.1038/nmat1571

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1571

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing