Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electric-field-induced redistribution of polar nano-regions in a relaxor ferroelectric

Abstract

Relaxor ferroelectrics, with their strong dependence of polarization on the applied electric field, are of considerable technological importance. On a microscopic scale, however, there exists competition as well as coexistence between short-range and long-range polar order. The conventional picture is that the polar nano-regions (PNRs) that appear at high temperatures beyond the Curie transition, form nuclei for the field-induced long-range order at low temperatures. Here, we report high-energy X-ray diffuse-scattering measurements on the relaxor Pb(Zn1/3Nb2/3)O3 (PZN) to study the short-range polar order under an electric field applied along the [111] direction. In contrast to conventional expectations, the overall diffuse-scattering intensity is not suppressed. On the other hand, the field induces a marked change on the shape of the three-dimensional diffuse-scattering intensity pattern, corresponding to a redistribution of PNRs in real space. We show that these surprising results are consistent with a model in which the PNRs with [110]-type polarizations, orthogonal to that of the surrounding environment, are embedded and persist in the [111]-polarized ferroelectric order of the bulk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of PNRs in the real space and their contributions to the diffuse scattering in the reciprocal space.
Figure 2: X-ray-diffraction images from PZN taken by the CCD detector at room temperature (T=300 K).
Figure 3: Schematic of the three-dimensional diffuse-scattering distribution from PZN.
Figure 4: Hysteresis curve of diffuse-scattering intensities versus field strength.
Figure 5: Polarization–electric-field hysteresis from the PZN (111) single-crystal platelet.
Figure 6: Real part of the dielectric permittivity measured under different conditions.

Similar content being viewed by others

References

  1. Park, S.-E. & Shrout, T. R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804–1811 (1997).

    Article  Google Scholar 

  2. Service, R. F. Shape-changing crystals get shifter. Science 275, 1878–1880 (1997).

    Article  Google Scholar 

  3. Burns, G. & Dacol, F. H. Crystalline ferroelectrics with glassy polarization behavior. Phys. Rev. B 28, 2527–2530 (1983).

    Article  Google Scholar 

  4. Cross, L. E. Relaxor ferroelectrics. Ferroelectrics 76, 241–267 (1987).

    Article  Google Scholar 

  5. Vakhrushev, S. B., Naberezhnov, A. A., Okuneva, N. M. & Savenko, B. N. Determination of polarization vectors in lead magnoniobates. Phys. Solid State 37, 1993–1997 (1995).

    Google Scholar 

  6. Hirota, K., Ye, Z.-G., Wakimoto, S., Gehring, P. M. & Shirane, G. Neutron diffuse scattering from polar nanoregions in the relaxor Pb(Mg1/3Nb2/3)O3 . Phys. Rev. B 65, 104105 (2002).

    Article  Google Scholar 

  7. Xu, G., Shirane, G., Copley, J. R. D. & Gehring, P. M. A neutron elastic diffuse scattering study of Pb(Mg1/3Nb2/3)O3 . Phys. Rev. B 69, 064112 (2004).

    Article  Google Scholar 

  8. Hiraka, H., Lee, S.-H., Gehring, P. M., Xu, G. & Shirane, G. Cold neutron study on the diffuse scattering and phonon excitations in the relaxor Pb(Mg1/3Nb2/3)O3 . Phys. Rev. B 70, 184105 (2004).

    Article  Google Scholar 

  9. Hlinka, J. et al. Diffuse scattering in Pb(Mg1/3Nb2/3)O3 with PbTiO3 by quasi-elastic neutron scattering. J. Phys. Condens. Matter 15, 4249–4257 (2003).

    Article  Google Scholar 

  10. Gvasaliya, S. N., Lushnikov, S. G. & Roessli, B. Disorder and relaxation mode in the lattice dynamics of the Pb(Mg1/3Nb2/3)O3 relaxor ferroelectric. Phys. Rev. B 69, 092105 (2004).

    Article  Google Scholar 

  11. You, H. & Zhang, Q. M. Diffuse x-ray scattering study of lead magnesium niobate single crystals. Phys. Rev. Lett. 79, 3950–3953 (1997).

    Article  Google Scholar 

  12. Takesue, N., Fujii, Y. & You, H. X-ray diffuse scattering study on ionic-pair displacement correlations in relaxor lead magnesium niobate. Phys. Rev. B 64, 184112 (2001).

    Article  Google Scholar 

  13. Westphal, V., Kleemann, W. & Glinchuk, M. D. Diffuse phase transitions and random-field induced domain states of the relaxor ferroelectric Pb(Mg1/3Nb2/3)O3 . Phys. Rev. Lett. 68, 847–850 (1992).

    Article  Google Scholar 

  14. Halperin, B. I. & Varma, C. M. Defects and the central peak near structural phase transitions. Phys. Rev. B 14, 4030–4044 (1976).

    Article  Google Scholar 

  15. Fisch, R. Random-field models for relaxor ferroelectric behavior. Phys. Rev. B 67, 094110 (2003).

    Article  Google Scholar 

  16. Pirc, R. & Blinc, R. Spherical random-bond-random-field model of relaxer ferroelectrics. Phys. Rev. B 60, 13470–13478 (1999).

    Article  Google Scholar 

  17. Imry, Y. & Ma, S. Random-field instability of the ordered state of continuous symmetry. Phys. Rev. Lett. 35, 1399–1402 (1975).

    Article  Google Scholar 

  18. Fisher, K. H. & Hertz, J. A. Spin Glasses (Cambridge Univ. Press, Cambridge, 1991).

    Book  Google Scholar 

  19. Birgeneau, R. J. Random fields and phase transitions in model magnetic systems. J. Magn. Magn. Mater. 177, 1–11 (1998).

    Article  Google Scholar 

  20. Ye, Z.-G., Dong, M. & Zhang, L. Domain structures and phase transitions of the relaxor-based piezo-/ferroelectric (1-x) Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals. Ferroelectrics 229, 223–232 (1999).

    Article  Google Scholar 

  21. Bing, Y.-H., Bokov, A. A., Ye, Z.-G., Noheda, B. & Shirane, G. Structural phase transition and dielectric relaxation in single crystals. J. Phys. Condens. Matter 17, 2493–2507 (2005).

    Article  Google Scholar 

  22. Xu, G., Zhong, Z., Hiraka, H. & Shirane, G. Three dimensional mapping of diffuse scattering in Pb(Mg1/3Nb2/3)O3-xPbTiO3 . Phys. Rev. B 70, 174109 (2004).

    Article  Google Scholar 

  23. Ye, Z.-G. Relaxor ferroelectric complex perovskites: Structure, properties and phase transitions. Key Eng. Mater. 155–156, 81–122 (1998).

    Google Scholar 

  24. Vakhrushev, S. B., Naberezhnov, A. A., Okuneva, N. M. & Savenko, B. N. Effect of electric field on neutron scattering in lead magnoniobate. Phys. Solid State 40, 1728–1733 (1998).

    Article  Google Scholar 

  25. Gehring, P. M., Ohwada, K. & Shirane, G. Electric-field effects on the diffuse scattering in Pb(Zn1/3Nb2/3)O3 doped with 8% PbTiO3 . Phys. Rev. B 70, 014110 (2004).

    Article  Google Scholar 

  26. Xu, G., Gehring, P. M. & Shirane, G. Persistence and memory of polar nanoregions in a ferroelectric relaxor under an electric field. Phys. Rev. B 72, 214106 (2005).

    Article  Google Scholar 

  27. Zhang, L., Dong, M. & Ye, Z.-G. Flux growth and characterization of the relaxer-based Pb(Zn1/3Nb2/3)TixO3 piezocrystals. Mater. Sci. Eng. B 78, 96–104 (2000).

    Article  Google Scholar 

  28. Xu, G. et al. Ground state in the relaxor ferroelectric Pb(Zn1/3Nb2/3)O3 . Phys. Rev. B 67, 104102 (2003).

    Article  Google Scholar 

  29. Bonneau, P., Garnier, P., Husson, E. & Morell, A. Structural study of PMN ceramics by x-ray-diffraction between 297 K and 1023 K. Mater. Res. Bull. 24, 201–206 (1989).

    Article  Google Scholar 

  30. Demathan, N. et al. A structural model for the relaxor Pb(Mg1/3Nb2/3)O3 at 5 K. J. Phys. Condens. Matter 3, 8159–8171 (1991).

    Article  Google Scholar 

  31. Stock, C. et al. Universal static and dynamic properties of the structural transition in Pb(Zn1/3Nb2/3)TixO3 . Phys. Rev. B 69, 094104 (2004).

    Article  Google Scholar 

  32. Bovtun, V. et al. Central-peak components and polar soft mode in relaxor Pb(Mg1/3Nb2/3)O3 crystals. Ferroelectrics 298, 23–30 (2004).

    Article  Google Scholar 

  33. Lehnen, P., Kleemann, W., Woike, T. & Pankrath, R. Ferroelectric nanodomains in the uniaxial relaxor system Sr0.61−xBa0.39Nb2O6:Ce3+x . Phys. Rev. B 64, 224109 (2001).

    Article  Google Scholar 

  34. Shvartsman, V. V. & Kholkin, A. L. Domain structure of 0.8 Pb(Mg1/3Nb2/3)O3-0.2PbTiO3 studied by piezoresponse force microscopy. Phys. Rev. B 69, 014102 (2004).

    Article  Google Scholar 

  35. Xu, G. et al. Anomalous phase in the relaxor ferroelectric Pb(Zn1/3Nb2/3)O3 . Phys. Rev. B 70, 064107 (2004).

    Article  Google Scholar 

  36. Lebon, A., Dammak, H. & Calvarin, G. Tetragonal and rhombohedral induced polar order from the relaxor state of Pb(Zn1/3Nb2/3)O3 . J. Phys.: Condens. Matter 15, 3069–3078 (2003).

    Google Scholar 

  37. Kuwata, J., Uchino, K. & Nomura, S. Phase transitions in the Pb(Zn1/3Nb2/3)O3 system. Ferroelectrics 37, 579–582 (1981).

    Article  Google Scholar 

  38. Fu, H. & Cohen, R. E. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectric. Nature 403, 281–283 (2000).

    Article  Google Scholar 

  39. Samara, G. A. Ferroelectricity revisited—advances in materials and physics. Solid State Phys. 56, 239–458 (2001).

    Article  Google Scholar 

  40. Samara, G. A., Venturini, E. L. & Schmidt, V. H. Dielectric properties and phase transitions of [Pb(Zn1/3Nb2/3)O3]0.905(PbTiO3)0.095: Influence of pressure. Phys. Rev. B 63, 184104 (2001).

    Article  Google Scholar 

  41. Chaabane, B., Kreisel, J., Dkhil, B., Bouvier, P. & Mezouar, M. Pressure-induced suppression of the diffuse scattering in the model relaxor ferroelectric Pb(Mg1/3Nb2/3)O3 . Phys. Rev. Lett. 90, 257601 (2003).

    Article  Google Scholar 

  42. Granzow, T., Woike, T., Wöhlecke, M., Imlau, M. & Kleemann, W. Change from 3D-ising to random field-ising-model criticality in a uniaxial relaxor ferroelectric. Phys. Rev. Lett. 92, 065701 (2004).

    Article  Google Scholar 

  43. Banys, J., Macutkevic, J., Grigalaitis, R. & Kleemann, W. Dynamics of nanoscale polar regions and critical behavior of the uniaxial relaxor Sr0.61Ba0.39Nb2O6:Co . Phys. Rev. B 72, 024106 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank A. A. Bokov, P. M. Gehring, H. Hiraka, S. M. Shapiro, C. Stock and J. M. Tranquada for stimulating discussions. Financial support from the US Department of Energy under contract No. DE-AC02-98CH10886, US Office of Naval Research Grant No. N00014-99-1-0738 and the Natural Science and Research Council of Canada (NSERC) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyong Xu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figure S1 (PDF 52 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, G., Zhong, Z., Bing, Y. et al. Electric-field-induced redistribution of polar nano-regions in a relaxor ferroelectric. Nature Mater 5, 134–140 (2006). https://doi.org/10.1038/nmat1560

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1560

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing