Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metal-free silicon–molecule–nanotube testbed and memory device

Abstract

Work from several laboratories has shown that metal nanofilaments cause problems in some molecular electronics testbeds. A new testbed for exploring the electrical properties of single molecules has been developed to eliminate the possibility of metal nanofilament formation and to ensure that molecular effects are measured. This metal-free system uses single-crystal silicon and single-walled carbon nanotubes as electrodes for the molecular monolayer. A direct Si–arylcarbon grafting method is used. Use of this structure with π-conjugated organic molecules resulted in a hysteresis loop with current–voltage measurements that are useful for an electronic memory device. The memory is non-volatile for more than 3 days, non-destructive for more than 1,000 reading operations and capable of more than 1,000 write–erase cycles before device breakdown. Devices without π-conjugated molecules (Si–H surface only) or with long-chain alkyl-bearing molecules produced no hysteresis, indicating that the observed memory effect is molecularly relevant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic of the Si–molecule–SWNT device and its fabrication process.
Figure 2: Structures of the molecules used in the Si–molecule–SWNT device.
Figure 3: Typical (V) characteristics of a Si–OPE 1–SWNT device.
Figure 4: The memory effect of a Si–OPE 1–SWNT device.
Figure 5: Arrhenius plots of the (V,T) test of a Si–OPE 1–SWNT device with a 5-μm diameter well showing little temperature dependence.
Figure 6: Plots demonstrating a fit with Fowler–Nordheim tunnelling in a Si–OPE 1–SWNT 5-μm-diameter-well device.

Similar content being viewed by others

References

  1. Tour, J. M. Molecular Electronics: Commercial Insights, Chemistry, Devices, Architecture and Programming (World Scientific, River Edge, New Jersey, 2003).

    Book  Google Scholar 

  2. Blum, A. S. et al. Molecularly inherent voltage-controlled conductance switching. Nature Mater. 4, 167–172 (2005).

    Article  Google Scholar 

  3. Donhauser, Z. J. et al. Conductance switching in single molecules through conformational changes. Science 292, 2303–2307 (2001).

    Article  Google Scholar 

  4. Chen, J., Reed, M. A., Rawlett, A. M. & Tour, J. M. Large on-off ratios and negative differential resistance in a molecular electronic device. Science 286, 1550–1552 (1999).

    Article  Google Scholar 

  5. Ramachandran, G. K. et al. A bond-fluctuation mechanism for stochastic switching in wired molecules. Science 300, 1413–1416 (2003).

    Article  Google Scholar 

  6. Collier, C. P. et al. Electronically configurable molecular-based logic gates. Science 285, 391–394 (1999).

    Article  Google Scholar 

  7. Coulter, S. K., Schwartz, M. P. & Hamers, R. J. Sulfur atoms as tethers for selective attachment of aromatic molecules to silicon(001) surfaces. J. Phys. Chem. B 105, 3079–3087 (2001).

    Article  Google Scholar 

  8. Guisinger, N. P., Basu, R., Greene, M. E., Baluch, A. S. & Hersam, M. C. Observed suppression of room temperature negative differential resistance in organic monolayers on Si(100). Nanotechology 15, S452–S458 (2004).

    Article  Google Scholar 

  9. Piva, P. G. et al. Field regulation of single-molecule conductivity by a charged surface atom. Nature 435, 658–661 (2005).

    Article  Google Scholar 

  10. Seminario, J. M., Zacarias, A. G. & Tour, J. M. Theoretical study of a molecular resonant tunneling diode. J. Am. Chem. Soc. 122, 3015–3020 (2000).

    Article  Google Scholar 

  11. Dameron, A. A., Ciszek, J. W., Tour, J. M. & Weiss, P. S. Effects of hindered internal rotation on packing and conductance of self-assembled monolayers. J. Phys. Chem. B 108, 16761–16767 (2004).

    Article  Google Scholar 

  12. Selzer, Y. et al. Effect of local environment on molecular conduction: isolated molecule versus self-assembled monolayer. Nano Lett. 5, 61–65 (2005).

    Article  Google Scholar 

  13. Selzer, Y., Carbassi, M. A., Mayer, T. S. & Allara, D. L. Temperature effects on conduction through a molecular junction. Nanotechnology 15, S483–S488 (2004).

    Article  Google Scholar 

  14. Newman, C. R. et al. Introduction to organic thin film transistors and design of n-channel organic semiconductors. Chem. Mater. 16, 4436–4451 (2004).

    Article  Google Scholar 

  15. Fisher, G. L. et al. Bond insertion, complexation, and penetration pathways of vapor-deposited aluminum atoms with HO- and CH3O-terminated organic monolayers. J. Am. Chem. Soc. 124, 5528–5541 (2002).

    Article  Google Scholar 

  16. De Boer, B. et al. Metallic contact formation for molecular electronics: interactions between vapor-deposited metals and self-assembled monolayers of conjugated mono- and dithiols. Langmuir 20, 1539–1542 (2004).

    Article  Google Scholar 

  17. Smith, R. K., Lewis, P. A. & Weiss, P. S. Patterning self-assembled monolayers. Prog. Surf. Sci. 75, 1–68 (2004).

    Article  Google Scholar 

  18. Haag, R., Rampi, M. A., Holmlin, R. E. & Whiteside, G. M. Electrical breakdown of aliphatic and aromatic self-assembled monolayers used as nanometer-thick organic dielectrics. J. Am. Chem. Soc. 121, 7895–7906 (1999).

    Article  Google Scholar 

  19. James, D. K. & Tour, J. M. Electrical measurements in molecular electronics. Chem. Mater. 16, 4423–4435 (2004).

    Article  Google Scholar 

  20. Anaya, A., Korotkov, A. L., Bowman, M., Waddel, J. & Davidovic, D. Nanometer-scale metallic grains connected with atomic-scale conductors. J. Appl. Phys. 93, 3501–3508 (2003).

    Article  Google Scholar 

  21. Lau, C. N., Stewart, D. R., Williams, R. S. & Bockrath, M. Direct observation of nanoscale switching centers in metal/molecule/metal structures. Nano Lett. 4, 569–572 (2004).

    Article  Google Scholar 

  22. Stewart, M. P. et al. Direct covalent grafting of conjugated molecules onto Si, GaAs, and Pd surfaces from aryldiazonium salts. J. Am. Chem. Soc. 126, 370–378 (2004).

    Article  Google Scholar 

  23. Dyke, C. A. & Tour, J. M. Covalent functionalization of single-walled carbon nanotubes for materials applications. J. Phys. Chem. A 108, 11151–11159 (2005).

    Article  Google Scholar 

  24. Mohney, S. E. et al. Measuring the specific contact resistance of contacts to semiconductor nanowires. Solid-State Electron. 49, 227–232 (2005).

    Article  Google Scholar 

  25. Chiang, I. W. et al. Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process). J. Phys. Chem. B 105, 8297–8301 (2001).

    Article  Google Scholar 

  26. Fan, F. -R. F. et al. Charge transport through self-assembled monolayers of compounds of interest in molecular electronics. J. Am. Chem. Soc. 124, 5550–5560 (2002).

    Article  Google Scholar 

  27. Pinson, J. & Podvorica, F. Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts. Chem. Soc. Rev. 34, 429–439 (2005).

    Article  Google Scholar 

  28. Kim, H. J. et al. A process integration of high-performance 64-kb MRAM. IEEE Trans. Magn. 39, 2851–2853 (2003).

    Article  Google Scholar 

  29. Salomon, A. et al. Comparison of electronic transport measurements on organic molecules. Adv. Mater. 15, 1881–1890 (2003).

    Article  Google Scholar 

  30. Wang, W., Lee, T., Kretzschmar, I. & Reed, M. A. Inelastic electron tunneling spectroscopy of an alkanedithiol self-assembled monolayer. Nano Lett. 4, 643–646 (2004).

    Article  Google Scholar 

  31. Rueckes, T. et al. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289, 94–97 (2000).

    Article  Google Scholar 

  32. Flatt, A. K., Chen, B. & Tour, J. M. Fabrication of carbon nanotube-molecule-silicon junctions. J. Am. Chem. Soc. 127, 8918–8919 (2005).

    Article  Google Scholar 

  33. Kosynkin, D. V. & Tour, J. M. Phenylene ethynylene diazonium salts as potential self-assembling molecular wires. Org. Lett. 3, 993–995 (2001).

    Google Scholar 

  34. Flatt, A. K. & Tour, J. M. Synthesis of thiol substituted oligoanilines for molecular device candidates. Tetrahedron Lett. 44, 6699–6702 (2003).

    Article  Google Scholar 

  35. Chen, F. et al. A molecular switch based on potential-induced changes of oxidation state. Nano Lett. 5, 503–506 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Defense Advanced Research Projects Agency through the Air Force Office of Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Tour.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information and figures (PDF 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J., Chen, B., Flatt, A. et al. Metal-free silicon–molecule–nanotube testbed and memory device. Nature Mater 5, 63–68 (2006). https://doi.org/10.1038/nmat1526

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1526

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing