Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Morphology-tuned wurtzite-type ZnS nanobelts


Nanometre-sized inorganic dots, wires and belts have a wide range of electrical and optical properties, and variable mechanical stability and phase-transition mechanisms that show a sensitive dependency on size, shape and structure. The optical properties of the semiconductor ZnS in wurtzite structures are considerably enhanced, but the lack of structural stability limits technological applications. Here, we demonstrate that morphology-tuned wurtzite ZnS nanobelts show a particular low-energy surface structure dominated by the surface facets. Experiments and calculations show that the morphology of ZnS nanobelts leads to a very high mechanical stability to 6.8 GPa, and also results in an explosive mechanism for the wurtzite-to-sphalerite phase transformation together with in situ fracture of the nanobelts. ZnS wurtzite nanobelts provide a model that is useful not only for understanding the morphology-tuned stability and transformation mechanism, but also for improving synthesis of metastable nanobelts with quantum effects for electronic and optical devices.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The synthesized wurtzite-structure ZnS nanobelts.
Figure 2: High-pressure X-ray-diffraction patterns of the wurtzite ZnS nanobelts.
Figure 3: Correlation between the nano-thickness (D) and transition pressure of one-dimensional wurtzite nanobelts.
Figure 4: Comparison of the three characteristic X-ray-diffraction peaks between wurtzite and sphalerite polymorphs at 1 atm pressure.
Figure 5: Schematic representation of the wurtzite-to-sphalerite phase transformation.


  1. Monroy, E., Omnes, F. & Calle, F. Wide-band gap semiconductor ultraviolet photodetectors. Semicond. Sci. Technol. 18, R33–R51 (2003).

    Article  Google Scholar 

  2. Bhargava, R. N., Gallagher, D., Hong, X. & Nurmikko, D. Optical properties of manganese-doped nanocrystals of ZnS. Phys. Rev. Lett. 72, 416–419 (1994).

    Article  Google Scholar 

  3. Park, W., King, J. S., Neff, C. W., Liddell, C. & Summers, C. ZnS-based photonic crystals. Phys. Status Solidi b 229, 949–960 (2002).

    Article  Google Scholar 

  4. Gilbert, B. et al. X-ray absorption spectroscopy of the cubic and hexagonal polytypes of zinc sulfide. Phys. Rev. B 66, 245205 (2002).

    Article  Google Scholar 

  5. Qadri, S. B. et al. The effect of particle size on the structural transitions in zinc sulfide. J. Appl. Phys. 89, 115–119 (2001).

    Article  Google Scholar 

  6. Desgreniers, S., Beaulieu, L. & Lepage, I. Pressure induced structural changes in ZnS. Phys. Rev. B 61, 8726–8733 (2000).

    Article  Google Scholar 

  7. Qadri, S. B. et al. Size-induced transition-temperature reduction in nanoparticles of ZnS. Phys. Rev. B 60, 9191–9193 (1999).

    Article  Google Scholar 

  8. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    Article  Google Scholar 

  9. Lieber, C. M. One-dimensional nanostructures: chemistry, physics applications. Solid State Commun. 107, 607–616 (1998).

    Article  Google Scholar 

  10. Zhao, Y. W. et al. Low-temperature synthesis of hexagonal (wurtzite) ZnS nanocrystals. J. Am. Chem. Soc. 126, 6874–6875 (2004).

    Article  Google Scholar 

  11. Ma, C., Moore, D., Li, J. & Wang, Z. L. Nanobelts, nanocombs, and nanowindmills of wurtzite ZnS. Adv. Mater. 15, 228–231 (2003).

    Article  Google Scholar 

  12. Wang, Z. W. et al. A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes. Proc. Natl Acad. Sci. USA 101, 13699–13702 (2004).

    Article  Google Scholar 

  13. Zaziski, D. et al. Critical size for fracture during solid-solid phase transformations. Nano Lett. 4, 943–946 (2004).

    Article  Google Scholar 

  14. Chen, C. C., Herhold, A. B., Johnson, C. S. & Alivisatos, A. P. Size dependence of structural metastability in semiconductor nanocrystals. Science 276, 398–401 (1997).

    Article  Google Scholar 

  15. Tolbert, S. H. & Alivisatos, A. P. The wurtzite to rock salt structural transformation in CdSe nanocrystals under high pressure. J. Chem. Phys. 102, 4642–4656 (1995).

    Article  Google Scholar 

  16. Barin, I., Knacke, O. & Kubschewski, O. Thermochemical Properties of Inorganic Substances 827–828 (Springer, Berlin, 1977).

    Book  Google Scholar 

  17. Hamad, S., Cristol, S. & Catlow, C. R. Surface structures and crystal morphology of ZnS: Computational study. J. Phys. Chem. B 106, 11002–11008 (2002).

    Article  Google Scholar 

  18. Wright, K., Watson, G. W., Parker, S. C. & Vaughan, D. J. Simulation of the structure and stability of sphalerite (ZnS) surfaces. Am. Mineral. 83, 141–146 (1998).

    Article  Google Scholar 

  19. Wright, K. & Gale, J. D. Interatomic potentials for the simulation of the zinc-blende and wurtzite forms of ZnS and CdS: Bulk structure, properties, and phase stability. Phys. Rev. B 70, 035211 (2004).

    Article  Google Scholar 

  20. Zhang, H. Z., Huang, F., Gilbert, B. & Banfield, J. F. Molecular dynamics simulations, thermodynamic analysis, and experimental study of phase stability of zinc sulfide nanoparticles. J. Phys. Chem. B 107, 13051–13060 (2003).

    Article  Google Scholar 

  21. Wang, Z. L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B 104, 1153–1175 (2000).

    Article  Google Scholar 

  22. Williams, V. A. Diffusion of some impurities in zinc sulfide single crystals. J. Mater. Sci. 7, 807–812 (1972).

    Article  Google Scholar 

  23. Birman, J. L. Simplified LCAO method for zincblende, wurtzite, and mixed crystal structures. Phys. Rev. 115, 1493–1905 (1959).

    Article  Google Scholar 

  24. Posfai, M. & Buseck, P. R. in Modular Aspects of Minerals Vol. 1 (ed. Merlino, S.) 193–235 (EMU Notes in Mineralogy, Eötvös Univ. Press, Budapest, 1997).

    Google Scholar 

  25. Alivisatos, P. The use of nanocrystals in biological detection. Nature Biotechnol. 22, 47–52 (2004).

    Article  Google Scholar 

  26. Ding, Y., Wang, X. D. & Wang, Z. L. Phase controlled synthesis of ZnS nanobelts: zinc blende vs wurtzite. Chem. Phys. Lett. 398, 32–36 (2004).

    Article  Google Scholar 

Download references


We appreciate financial support from the Director’s Funded Postdoctoral Fellowship at Los Alamos National Laboratory. We also acknowledge gratefully the staff at CHESS, Wilson Laboratory of Cornell University for assistance with experimental matters. X.D.W. and Z.L.W. are grateful for support from NSF. Special appreciation goes to the Carnegie/DOE Alliance Center (CDAC) for significant support.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Zhongwu Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, Z., Daemen, L., Zhao, Y. et al. Morphology-tuned wurtzite-type ZnS nanobelts. Nature Mater 4, 922–927 (2005).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing