Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identifying and counting point defects in carbon nanotubes

Abstract

The prevailing conception of carbon nanotubes and particularly single-walled carbon nanotubes (SWNTs) continues to be one of perfectly crystalline wires. Here, we demonstrate a selective electrochemical method that labels point defects and makes them easily visible for quantitative analysis. High-quality SWNTs are confirmed to contain one defect per 4 μm on average, with a distribution weighted towards areas of SWNT curvature. Although this defect density compares favourably to high-quality, silicon single-crystals, the presence of a single defect can have tremendous electronic effects in one-dimensional conductors such as SWNTs. We demonstrate a one-to-one correspondence between chemically active point defects and sites of local electronic sensitivity in SWNT circuits, confirming the expectation that individual defects may be critical to understanding and controlling variability, noise and chemical sensitivity in SWNT electronic devices. By varying the SWNT synthesis technique, we further show that the defect spacing can be varied over orders of magnitude. The ability to detect and analyse point defects, especially at very low concentrations, indicates the promise of this technique for quantitative process analysis, especially in nanoelectronics development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selective nucleation at chemical defects on HOPG and SWNTs.
Figure 2: Selective versus non-selective growth can be controlled by the deposition potentials.
Figure 3: Variability in defect spacing.
Figure 4: Correspondence between local electronic resistance and sites of enhanced chemical reactivity.

Similar content being viewed by others

References

  1. Ebbesen, T. W. & Takada, T. Topological and sp3 defect structures in nanotubes. Carbon 33, 973–978 (1995).

    Article  Google Scholar 

  2. Thess, A. et al. Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487 (1996).

    Article  Google Scholar 

  3. Cassell, A. M., Raymakers, J. A., Kong, J. & Dai, H. J. Large scale CVD synthesis of single-walled carbon nanotubes. J. Phys. Chem. B 103, 6484–6492 (1999).

    Article  Google Scholar 

  4. Kong, J., Soh, H. T., Cassell, A. M., Quate, C. F. & Dai, H. J. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395, 878–881 (1998).

    Article  Google Scholar 

  5. Nikolaev, P. et al. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313, 91–97 (1999).

    Article  Google Scholar 

  6. Hata, K. et al. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306, 1362–1364 (2004).

    Article  Google Scholar 

  7. Bom, D. et al. Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: Evidence for the role of defect sites in carbon nanotube chemistry. Nano Lett. 2, 615–619 (2002).

    Article  Google Scholar 

  8. Hamon, M. A. et al. End-group and defect analysis of soluble single-walled carbon nanotubes. Chem. Phys. Lett. 347, 8–12 (2001).

    Article  Google Scholar 

  9. Dillon, A. C. et al. Systematic inclusion of defects in pure carbon single-wall nanotubes and their effect on the Raman D-band. Chem. Phys. Lett. 401, 522–528 (2005).

    Article  Google Scholar 

  10. Clauss, W. et al. Electron backscattering on single-wall carbon nanotubes observed by scanning tunneling microscopy. Europhys. Lett. 47, 601–607 (1999).

    Article  Google Scholar 

  11. Kim, H. et al. Direct observation of localized defect states in semiconductor nanotube junctions. Phys. Rev. Lett. 90, 216107 (2003).

    Article  Google Scholar 

  12. Ishigami, M. et al. Identifying defects in nanoscale materials. Phys. Rev. Lett. 93, 196803 (2004).

    Article  Google Scholar 

  13. Doorn, S. K. et al. Raman spectroscopy and imaging of ultralong carbon nanotubes. J. Phys. Chem. B 109, 3751–3758 (2005).

    Article  Google Scholar 

  14. Louie, S. G. in Carbon Nanotubes 113–145 (Springer, Berlin, 2001).

    Book  Google Scholar 

  15. Zach, M. P., Ng, K. H. & Penner, R. M. Molybdenum nanowires by electrodeposition. Science 290, 2120–2123 (2000).

    Article  Google Scholar 

  16. Penner, R. M. Mesoscopic metal particles and wires by electrodeposition. J. Phys. Chem. B 106, 3339–3353 (2002).

    Article  Google Scholar 

  17. Walter, E. C. et al. Metal nanowire arrays by electrodeposition. Chem. Phys. Chem. 4, 131–138 (2003).

    Article  Google Scholar 

  18. Banks, C. E., Davies, T. J., Wildgoose, G. G. & Compton, R. G. Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chem. Commun. 829–841 (2005).

  19. An, L., Owens, J. M., McNeil, L. E. & Liu, J. Synthesis of nearly uniform single-walled carbon nanotubes using identical metal-containing molecular nanoclusters as catalysts. J. Am. Chem. Soc. 124, 13688–13689 (2002).

    Article  Google Scholar 

  20. Kruger, M., Buitelaar, M. R., Nussbaumer, T., Schonenberger, C. & Forro, L. Electrochemical carbon nanotube field-effect transistor. Appl. Phys. Lett. 78, 1291–1293 (2001).

    Article  Google Scholar 

  21. Chen, J. et al. Solution properties of single-walled carbon nanotubes. Science 282, 95–98 (1998).

    Article  Google Scholar 

  22. Braun, E., Eichen, Y., Sivan, U. & Ben-Yoseph, G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391, 775–778 (1998).

    Article  Google Scholar 

  23. Heller, I. et al. Individual single-walled carbon nanotubes as nanoelectrodes for electrochemistry. Nano Lett. 5, 137–142 (2005).

    Article  Google Scholar 

  24. Kissinger, G., Gräf, D., Lambert, U., Grabolla, T. & Richter, H. Key influence of the thermal history on process-induced defects in Czochralski silicon wafers. Semicond. Sci. Technol. 12, 933–937 (1997).

    Article  Google Scholar 

  25. Xi, Z., Chen, J., Yang, D., Lawerenz, A. & Moeller, H. J. Copper precipitation in large-diameter Czochralski silicon. J. Appl. Phys. 97, 094909 (2005).

    Article  Google Scholar 

  26. Dresselhaus, M. S. et al. Science and applications of single-nanotube Raman spectroscopy. J. Nanosci. Nanotechnol. 3, 19–37 (2003).

    Article  Google Scholar 

  27. Pimenta, M. A. et al. Diameter dependence of the Raman D-band in isolated single-wall carbon nanotubes. Phys. Rev. B 64, 041401 (2001).

    Article  Google Scholar 

  28. Mann, D., Javey, A., Kong, J., Wang, Q. & Dai, H. J. Ballistic transport in metallic nanotubes with reliable Pd ohmic contacts. Nano Lett. 3, 1541–1544 (2003).

    Article  Google Scholar 

  29. Bradley, K., Gabriel, J. C. P. & Gruner, G. Flexible nanotube electronics. Nano Lett. 3, 1353–1355 (2003).

    Article  Google Scholar 

  30. Li, S. D., Yu, Z., Rutherglen, C. & Burke, P. J. Electrical properties of 0.4 cm long single-walled carbon nanotubes. Nano Lett. 4, 2003–2007 (2004).

    Article  Google Scholar 

  31. Yao, Z., Dekker, C. & Avouris, P. in Carbon Nanotubes 147–171 (Springer, Berlin, 2001).

    Book  Google Scholar 

  32. Heinze, S. et al. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89, 106801 (2002).

    Article  Google Scholar 

  33. Bockrath, M. et al. Resonant electron scattering by defects in single-walled carbon nanotubes. Science 291, 283–285 (2001).

    Article  Google Scholar 

  34. Bachtold, A. et al. Scanned probe microscopy of electronic transport in carbon nanotubes. Phys. Rev. Lett. 84, 6082–6085 (2000).

    Article  Google Scholar 

  35. Tans, S. J. & Dekker, C. Molecular transistors — potential modulations along carbon nanotubes. Nature 404, 834–835 (2000).

    Article  Google Scholar 

  36. Freitag, M., Johnson, A. T., Kalinin, S. V. & Bonnell, D. A. Role of single defects in electronic transport through carbon nanotube field-effect transistors. Phys. Rev. Lett. 89, 216801 (2002).

    Article  Google Scholar 

  37. Banerjee, S., Hemraj-Benny, T. & Wong, S. S. Covalent surface chemistry of single-walled carbon nanotubes. Adv. Mater. 17, 17–29 (2005).

    Article  Google Scholar 

  38. Duesberg, G. S. et al. Experimental observation of individual single-wall nanotube species by Raman microscopy. Chem. Phys. Lett. 310, 8–14 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Nanomix, R. Haddon, and P. Burke for supplying various types of SWNT for this study, N. Emmott for experimental assistance and R. Penner for sharing his expertise with HOPG. Partially funded by NSF 0404057 and the ACS PRF-39672-G5M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip G. Collins.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, Y., Goldsmith, B. & Collins, P. Identifying and counting point defects in carbon nanotubes. Nature Mater 4, 906–911 (2005). https://doi.org/10.1038/nmat1516

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1516

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing