Biphasic Janus particles with nanoscale anisotropy

Article metrics

Abstract

Advances in the field of nanotechnology have fuelled the vision of future devices spawned from tiny functional components that are able to assemble according to a master blueprint1. In this concept, the controlled distribution of matter or ‘patchiness’2 is important for creating anisotropic building blocks and introduces an extra design parameter — beyond size and shape3,4. Although the reliable and efficient fabrication of building blocks with controllable material distributions will be of interest for many applications in research and technology, their synthesis has been addressed only in a few specialized cases5,6. Here we show the design and synthesis of polymer-based particles with two distinct phases. The biphasic geometry of these Janus particles is induced by the simultaneous electrohydrodynamic jetting7,8,9 of parallel polymer solutions under the influence of an electrical field. The individual phases can be independently loaded with biomolecules or selectively modified with model ligands, as confirmed by confocal microscopy and transmission electron microscopy. The fact that the spatial distribution of matter can be controlled at such small length scales will provide access to unknown anisotropic materials. This type of nanocolloid may enable the design of multicomponent carriers for drug delivery, molecular imaging or guided self-assembly.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Biphasic electrified jetting using side-by-side dual capillaries.
Figure 2: Biphasic anisotropy examined by TEM and modelling.
Figure 3: Encapsulation of biomolecules in a dipolar fashion.
Figure 4: Selective chemical modification.

References

  1. 1

    Glotzer, S. C. Some assembly required. Science 306, 419–420 (2004).

  2. 2

    Zhang, Z. L. & Glotzer, S. C. Self-assembly of patchy particles. Nano Lett. 4, 1407–1413 (2004).

  3. 3

    Manna, L., Milliron, D. J., Meisel, A., Scher, E. C. & Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nature Mater. 2, 382–385 (2003).

  4. 4

    Malikova, N., Pastoriza-Santos, I., Schierhorn, M., Kotov, N. A. & Liz-Marzan, L. M. Layer-by-layer assembled mixed spherical and planar gold nanoparticles: control of interparticle interactions. Langmuir 18, 3694–3697 (2002).

  5. 5

    Hulvat, J. F & Stupp, S. I. Anisotropic properties of conducting polymers prepared by liquid crystal templating. Adv. Mater. 16, 589–592 (2004).

  6. 6

    Teranishi, T., Inoue, Y., Oumi, Y. & Sano, T. Nanoacorns: anisotropically phase-segregated CoPd sulfide nanoparticles. J. Am. Chem. Soc. 126, 9914–9915 (2004).

  7. 7

    Taylor, G. Disintegration of water drops in electric field. Proc. R. Soc. Lond. A 280, 383–397 (1964).

  8. 8

    Zeleny, J. On the conditions of instability of electrified drops, with applications to the electrical discharge from liquid points. Proc. Camb. Phil. Soc. 18, 71–83 (1915).

  9. 9

    Dzenis, Y. Material science: spinning continuous fibres for nanotechnology. Science 304, 1917–1918 (2004).

  10. 10

    Reneker, D. H. & Chun, I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7, 216–223 (1996).

  11. 11

    Fong, H., Chun, I. & Reneker, D. H. Beaded nanofibres formed during electrospinning. Polymer 40, 4585–4592 (1999).

  12. 12

    Jun, Z., Hou, H., Schaper, A., Wendorff, J. H. & Greiner, A. Poly-L-lactide nanofibres by electrospinning—Influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology. e-Polymers 009, 1–9 (2003).

  13. 13

    Zeng, J. et al. Ultrafine fibres electrospun from biodegradable polymers. J. Appl. Polym. Sci. 89, 1085–1092 (2003).

  14. 14

    Sanders, E. H., Kloefkorn, R., Bowlin, G. L., Simpson, D. G. & Wnek, G. E. Two-phase electrospinning from a single electrified jet: microencapsulation of aqueous reservoirs in poly(ethylene-co-vinyl acetate) fibres. Macromolecules 36, 3803–3805 (2003).

  15. 15

    Sun, Z., Zussman, E., Yarin, A. L., Wendorff, J. H. & Greiner, A. Compound core-shell polymer nanofibres by co-electrospinning. Adv. Mater. 15, 1929–1932 (2003).

  16. 16

    Loscertales, I. G. et al. Electrically forced coaxial nanojets for one-step hollow nanofiber design. J. Am. Chem. Soc. 126, 5376–5377 (2004).

  17. 17

    Larsen, G., Velarde-Ortiz, R., Minchow, K., Barrero, A. & Loscertales, I. G. A method for making inorganic and hybrid (organic/inorganic) fibres and vesicles with diameters in the submicrometer and micrometer range via sol-gel chemistry and electrically forced liquid jets. J. Am. Chem. Soc. 125, 1154–1155 (2003).

  18. 18

    Loscertales, I. G. et al. Micro/nano encapsulation via electrified coaxial liquid jets. Science 295, 1695–1698 (2002).

  19. 19

    Berkland, C., Daniel, W., Pack, D. W. & Kim, K. Controlling surface nano-structure using flow-limited field-injection electrostatic spraying (FFESS) of poly(d,l-lactide-co-glycolide). Biomaterials 25, 5649–5658 (2004).

  20. 20

    Berkland, C., Pollauf, E., Pack, D. W. & Kim, K. Uniform double-walled polymer microspheres of controllable shell thickness. J. Control. Release 96, 101–111 (2004).

  21. 21

    Gupta, P. & Wilkes, G. L. Some investigations on the fiber formation by utilizing a side-by-side bicomponent electrospinning approach. Polymer 44, 6353–6359 (2003).

  22. 22

    Madhugiri, S., Dalton, A., Gutierrez, J., Ferraris, J. P. & Balkus, K. J. Jr. Electrospun MEH-PPV/SBA-15 composite nanofibres using a dual syringe method. J. Am. Chem. Soc. 125, 14531–14538 (2003).

  23. 23

    Barrero, A., Gañán-Calvo, A. M., Dávila, J., Palacio, A. & Gómez-González, E. Low and high Reynolds number flows inside Taylor cones. Phys. Rev. E 58, 7309–7314 (1998).

  24. 24

    http://www.susqu.edu/facstaff/b/brakke/evolver/evolver.html.

  25. 25

    Utada, A. S. et al. Monodisperse double emulsions generated from a microcapillary device. Science 308, 537–541 (2005).

  26. 26

    Xu, S. et al. Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew. Chem. Int. Edn Engl. 44, 724–728 (2005).

  27. 27

    Hermanson, G. T. Bioconjugate Techniques (Academic, San Diego, 1995).

  28. 28

    Millman, J. R., Bhatt, K. H., Prevo, B. G. & Velev, O. D. Anisotropic particle synthesis in dielectrophoretically controlled microdroplet reactors. Nature Mater. 4, 98–102 (2005).

  29. 29

    Lu, Y. et al. Asymmetric dimers can be formed by dewetting half-shells of gold deposited on the surfaces of spherical oxide colloids. J. Am. Chem. Soc. 125, 12724–12725 (2003).

  30. 30

    Paunov, V. N. & Cayre, O. J. Supraparticles and ‘Janus’ particles fabricated by replication of particle monolayers at liquid surfaces using a gel trapping technique. Adv. Mater. 16, 788–791 (2004).

Download references

Acknowledgements

We thank Solomon, University of Michigan, for use of the confocal laser scanning microscope and Manke, Wayne State University, for use of the viscometer. D.C.M. acknowledges partial support from the National Science Foundation through grant DMR-0084304.

Author information

Correspondence to Joerg Lahann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary table 1 (PDF 39 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Roh, K., Martin, D. & Lahann, J. Biphasic Janus particles with nanoscale anisotropy. Nature Mater 4, 759–763 (2005) doi:10.1038/nmat1486

Download citation

Further reading